Ting Zhang, M. Haider, J. I. D. Alexander, Y. Massoud
{"title":"A Coupled Schmitt Trigger Oscillator Neural Network for Pattern Recognition Applications","authors":"Ting Zhang, M. Haider, J. I. D. Alexander, Y. Massoud","doi":"10.1109/MWSCAS.2018.8624010","DOIUrl":null,"url":null,"abstract":"This paper demonstrates a coupled Schmitt trigger oscillator based oscillator neural network (SMT-ONN) for pattern recognition applications. Unlike previous ONN models, the SMT-ONN can be easily realized in both hardware and software levels. A mathematical model of the Schmitt Trigger Oscillator as well as the corresponding CMOS circuit are presented to validate the mathematical model. The SMT-ONN can realize the pattern recognition task by considering the convergence time and frequency as the recognition indicators. A Kuramoto model based frequency synchronization approach is utilized, and simulation results indicate less than 160 ms convergence time and close frequency match for a simplified pattern recognition application.","PeriodicalId":365263,"journal":{"name":"2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2018.8624010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper demonstrates a coupled Schmitt trigger oscillator based oscillator neural network (SMT-ONN) for pattern recognition applications. Unlike previous ONN models, the SMT-ONN can be easily realized in both hardware and software levels. A mathematical model of the Schmitt Trigger Oscillator as well as the corresponding CMOS circuit are presented to validate the mathematical model. The SMT-ONN can realize the pattern recognition task by considering the convergence time and frequency as the recognition indicators. A Kuramoto model based frequency synchronization approach is utilized, and simulation results indicate less than 160 ms convergence time and close frequency match for a simplified pattern recognition application.