有機農法採用之空間計量分析:以農業普查稻作農家為例

楊婷雅 楊婷雅, 張芸慈 Ting-Ya Yang, 陸怡蕙 Yun-Cih Chang
{"title":"有機農法採用之空間計量分析:以農業普查稻作農家為例","authors":"楊婷雅 楊婷雅, 張芸慈 Ting-Ya Yang, 陸怡蕙 Yun-Cih Chang","doi":"10.53106/054696002022060111001","DOIUrl":null,"url":null,"abstract":"\n 在提倡環境友善與永續發展的聲浪中,有機農法在全球逐漸受到重視。臺灣的有機農地面積占比於21世紀快速成長,至2020年已成長至1.37%,期間多以有機稻米呈現最高占比。本研究以2015年農林漁牧普查整理而得之鄉鎮層級資料,針對臺灣地區稻農有機農法的採用率進行影響因子之分析。本研究與過往研究之主要差異在於同時考量各鄉鎮農家主要經營者及家戶成員之社會經濟特性,並同時以兩種空間計量迴歸方法-空間落遲模型 (spatial lag model)、空間誤差模型 (spatial error model) 解決有機農法採用率空間自相關性所造成之估計偏誤問題。根據全域型空間自相關統計分析結果,有機農法採用率之空間自相關指標Moran’s I值為0.366,顯示整體而言臺灣鄉鎮在有機農法採用率上有空間聚集情形。此外,由空間計量模型之估計結果,可知影響臺灣稻米有機農法 採用的因子主要為鄉鎮之經營管理者年齡組成、中高教育程度比例、全年工作日數比例,以及戶內成員之性別、教育程度及非農工作比例。本研究結果有助於日後有機農業發展相關政策之制定,進而提升政府有機農業推動之政策效益。\n Under the notion of environmental-friendly and sustainable development, organic farming is gaining traction worldwide. In Taiwan, farmland allocated to organic farming has grown rapidly, up to 1.37% by 2020. Among different crop categories, rice has taken the largest share during the past two decades. Drawn from the 2015 Agriculture Census data at the township level, this study analyzed the determinants of the adoption rate of organic farming for rice farm households in Taiwan. This study departs from the previous research by considering the socioeconomic characteristics of both farm operators and household working population at average township levels. In addition, two spatial econometric models—spatial lag model and spatial error model—are used to deal with the estimation bias resulting from the spatial autocorrelation of organic adoption rates. The spatial autocorrelation index, Moran’s I, which is estimated from the global spatial autocorrelation analysis, equals to 0.366, indicating that there are spatial clusters in the township adoption rate of organic farming. Results from spatial econometric analyses suggest that, the proportion of major operators at different age groups, educational levels and workday groups are the major determinants of township-level adoption rates. In addition, working-age members’ gender ratio, proportion of different educational levels and portion of non-agricultural workers also explains the variations in organic adoption rate. This study provides essential references for policy design aiming at organic agriculture development in the future, which thus enhances the efficiency of organic agriculture development.\n \n","PeriodicalId":254216,"journal":{"name":"應用經濟論叢","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"應用經濟論叢","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53106/054696002022060111001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

在提倡環境友善與永續發展的聲浪中,有機農法在全球逐漸受到重視。臺灣的有機農地面積占比於21世紀快速成長,至2020年已成長至1.37%,期間多以有機稻米呈現最高占比。本研究以2015年農林漁牧普查整理而得之鄉鎮層級資料,針對臺灣地區稻農有機農法的採用率進行影響因子之分析。本研究與過往研究之主要差異在於同時考量各鄉鎮農家主要經營者及家戶成員之社會經濟特性,並同時以兩種空間計量迴歸方法-空間落遲模型 (spatial lag model)、空間誤差模型 (spatial error model) 解決有機農法採用率空間自相關性所造成之估計偏誤問題。根據全域型空間自相關統計分析結果,有機農法採用率之空間自相關指標Moran’s I值為0.366,顯示整體而言臺灣鄉鎮在有機農法採用率上有空間聚集情形。此外,由空間計量模型之估計結果,可知影響臺灣稻米有機農法 採用的因子主要為鄉鎮之經營管理者年齡組成、中高教育程度比例、全年工作日數比例,以及戶內成員之性別、教育程度及非農工作比例。本研究結果有助於日後有機農業發展相關政策之制定,進而提升政府有機農業推動之政策效益。  Under the notion of environmental-friendly and sustainable development, organic farming is gaining traction worldwide. In Taiwan, farmland allocated to organic farming has grown rapidly, up to 1.37% by 2020. Among different crop categories, rice has taken the largest share during the past two decades. Drawn from the 2015 Agriculture Census data at the township level, this study analyzed the determinants of the adoption rate of organic farming for rice farm households in Taiwan. This study departs from the previous research by considering the socioeconomic characteristics of both farm operators and household working population at average township levels. In addition, two spatial econometric models—spatial lag model and spatial error model—are used to deal with the estimation bias resulting from the spatial autocorrelation of organic adoption rates. The spatial autocorrelation index, Moran’s I, which is estimated from the global spatial autocorrelation analysis, equals to 0.366, indicating that there are spatial clusters in the township adoption rate of organic farming. Results from spatial econometric analyses suggest that, the proportion of major operators at different age groups, educational levels and workday groups are the major determinants of township-level adoption rates. In addition, working-age members’ gender ratio, proportion of different educational levels and portion of non-agricultural workers also explains the variations in organic adoption rate. This study provides essential references for policy design aiming at organic agriculture development in the future, which thus enhances the efficiency of organic agriculture development.  
有机农法采用之空间计量分析:以农业普查稻作农家为例
在提倡环境友善与永续发展的声浪中,有机农法在全球逐渐受到重视。台湾的有机农地面积占比于21世纪快速成长,至2020年已成长至1.37%,期间多以有机稻米呈现最高占比。本研究以2015年农林渔牧普查整理而得之乡镇层级资料,针对台湾地区稻农有机农法的采用率进行影响因子之分析。本研究与过往研究之主要差异在于同时考量各乡镇农家主要经营者及家户成员之社会经济特性,并同时以两种空间计量回归方法-空间落迟模型 (spatial lag model)、空间误差模型 (spatial error model) 解决有机农法采用率空间自相关性所造成之估计偏误问题。根据全域型空间自相关统计分析结果,有机农法采用率之空间自相关指标Moran’s I值为0.366,显示整体而言台湾乡镇在有机农法采用率上有空间聚集情形。此外,由空间计量模型之估计结果,可知影响台湾稻米有机农法 采用的因子主要为乡镇之经营管理者年龄组成、中高教育程度比例、全年工作日数比例,以及户内成员之性别、教育程度及非农工作比例。本研究结果有助于日后有机农业发展相关政策之制定,进而提升政府有机农业推动之政策效益。 Under the notion of environmental-friendly and sustainable development, organic farming is gaining traction worldwide. In Taiwan, farmland allocated to organic farming has grown rapidly, up to 1.37% by 2020. Among different crop categories, rice has taken the largest share during the past two decades. Drawn from the 2015 Agriculture Census data at the township level, this study analyzed the determinants of the adoption rate of organic farming for rice farm households in Taiwan. This study departs from the previous research by considering the socioeconomic characteristics of both farm operators and household working population at average township levels. In addition, two spatial econometric models—spatial lag model and spatial error model—are used to deal with the estimation bias resulting from the spatial autocorrelation of organic adoption rates. The spatial autocorrelation index, Moran’s I, which is estimated from the global spatial autocorrelation analysis, equals to 0.366, indicating that there are spatial clusters in the township adoption rate of organic farming. Results from spatial econometric analyses suggest that, the proportion of major operators at different age groups, educational levels and workday groups are the major determinants of township-level adoption rates. In addition, working-age members’ gender ratio, proportion of different educational levels and portion of non-agricultural workers also explains the variations in organic adoption rate. This study provides essential references for policy design aiming at organic agriculture development in the future, which thus enhances the efficiency of organic agriculture development.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信