H-matrix compression of discontinous Galerkin method exact radiating boundary conditions

Hamid Bagherli, I. Jeffrey
{"title":"H-matrix compression of discontinous Galerkin method exact radiating boundary conditions","authors":"Hamid Bagherli, I. Jeffrey","doi":"10.1109/ANTEM.2016.7550229","DOIUrl":null,"url":null,"abstract":"The discontinuous Galerkin method (DGM) is a flexible high-order forward solver for time-harmonic scattering problems in electromagnetics that results in a typically sparse system of linear equations. However, when exact radiating boundary conditions (ERBCs) are used to truncate the computational domain, a dense block is introduced into the DGM system that relates elements on a Huygens surface to elements on the boundary of the computational domain. In the context of iterative solution methods, this dense block can dominate the cost of evaluating matrix-vector-products and should be accelerated. Herein, we investigate the application of Hierarchical Matrices (H-matrices) to compress and accelerate the evaluation of the dense ERBC sub-matrix. Results are limited to high-order 2D transverse magnetic problems but demonstrate that effective compression resulting in substantial memory and time savings can be achieved even for relatively small problem sizes.","PeriodicalId":447985,"journal":{"name":"2016 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANTEM.2016.7550229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The discontinuous Galerkin method (DGM) is a flexible high-order forward solver for time-harmonic scattering problems in electromagnetics that results in a typically sparse system of linear equations. However, when exact radiating boundary conditions (ERBCs) are used to truncate the computational domain, a dense block is introduced into the DGM system that relates elements on a Huygens surface to elements on the boundary of the computational domain. In the context of iterative solution methods, this dense block can dominate the cost of evaluating matrix-vector-products and should be accelerated. Herein, we investigate the application of Hierarchical Matrices (H-matrices) to compress and accelerate the evaluation of the dense ERBC sub-matrix. Results are limited to high-order 2D transverse magnetic problems but demonstrate that effective compression resulting in substantial memory and time savings can be achieved even for relatively small problem sizes.
不连续伽辽金法精确辐射边界条件下的h矩阵压缩
不连续伽辽金方法(DGM)是一种灵活的高阶正演解电磁学中时间谐波散射问题的方法。然而,当使用精确辐射边界条件(ERBCs)截断计算域时,在DGM系统中引入了一个致密块,该块将惠更斯表面上的元素与计算域边界上的元素联系起来。在迭代求解方法中,这种密集块可以支配求矩阵-向量积的代价,并且应该加速。本文研究了用层次矩阵(h -矩阵)来压缩和加速密集ERBC子矩阵的求值。结果仅限于高阶二维横向磁问题,但表明有效的压缩导致大量的内存和时间节省,甚至可以实现相对较小的问题规模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信