Optimal Routh Approximates for Discrete-Time Interval Systems using Kharitonov Theorem

N. Vijaya Anand, M. Sivakumar, R. Srinivasa Rao
{"title":"Optimal Routh Approximates for Discrete-Time Interval Systems using Kharitonov Theorem","authors":"N. Vijaya Anand, M. Sivakumar, R. Srinivasa Rao","doi":"10.1109/RTECC.2018.8625700","DOIUrl":null,"url":null,"abstract":"In this paper, a new model order reduction technique for discrete time interval system is proposed using the prominence of Social Group Optimization (SGO) search algorithm. Reduced Order Interval model is build using Alpha parameters of Higher Order discrete time Interval Systems that are derived based on a recursive formula. The proposed order reduction method is obtained by minimizing Integral Squared Error as an objective function. Numerical example existing in literature are considered to show the effectiveness of the technique. Convincing simulation results are obtained. Keywords:","PeriodicalId":445688,"journal":{"name":"2018 International Conference on Recent Trends in Electrical, Control and Communication (RTECC)","volume":"52 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Recent Trends in Electrical, Control and Communication (RTECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTECC.2018.8625700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a new model order reduction technique for discrete time interval system is proposed using the prominence of Social Group Optimization (SGO) search algorithm. Reduced Order Interval model is build using Alpha parameters of Higher Order discrete time Interval Systems that are derived based on a recursive formula. The proposed order reduction method is obtained by minimizing Integral Squared Error as an objective function. Numerical example existing in literature are considered to show the effectiveness of the technique. Convincing simulation results are obtained. Keywords:
用Kharitonov定理求离散时间区间系统的最优生长逼近
本文利用社会群体优化(Social Group Optimization, SGO)搜索算法的优势,提出了一种新的离散时间间隔系统模型降阶技术。利用基于递归公式导出的高阶离散时间区间系统的Alpha参数,建立了降阶区间模型。所提出的降阶方法是通过最小化积分平方误差作为目标函数来实现的。结合文献中已有的数值算例,验证了该方法的有效性。仿真结果令人信服。关键词:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信