{"title":"Enhanced Cellular Activity on Conducting Polymer","authors":"Rajiv Borah, Ashok Kumar","doi":"10.4018/978-1-5225-7838-3.CH006","DOIUrl":null,"url":null,"abstract":"This chapter includes detailed review of the research undertaken with conducting polymer (CP) based composites with chitosan (Ch) for tissue engineering till date. The beneficial role of electrically conductive biomaterials has been discussed with the possible strategies to overcome the shortcomings of CP alone through blending with Ch due to its excellent biocompatibility, biodegradability, and bioactivity. Additionally, this embodiment deals with the optimization and characterization of electrically conductive, biocompatible and biodegradable Polyaniline: Chitosan (PAni:Ch) nanocomposites as cell culture substrates for MDA-MB-231 and NIH 3T3 fibroblast in order to examine the combined effect of nanofiber structure and surface modification on cell-biomaterial interactions. The nanocomposites were further checked as a conductive scaffold for electrical stimulation of a neuronal model PC12 cell line in order to explore the potential of the materials in neural tissue engineering.","PeriodicalId":375268,"journal":{"name":"Research Anthology on Emerging Technologies and Ethical Implications in Human Enhancement","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Anthology on Emerging Technologies and Ethical Implications in Human Enhancement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-7838-3.CH006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This chapter includes detailed review of the research undertaken with conducting polymer (CP) based composites with chitosan (Ch) for tissue engineering till date. The beneficial role of electrically conductive biomaterials has been discussed with the possible strategies to overcome the shortcomings of CP alone through blending with Ch due to its excellent biocompatibility, biodegradability, and bioactivity. Additionally, this embodiment deals with the optimization and characterization of electrically conductive, biocompatible and biodegradable Polyaniline: Chitosan (PAni:Ch) nanocomposites as cell culture substrates for MDA-MB-231 and NIH 3T3 fibroblast in order to examine the combined effect of nanofiber structure and surface modification on cell-biomaterial interactions. The nanocomposites were further checked as a conductive scaffold for electrical stimulation of a neuronal model PC12 cell line in order to explore the potential of the materials in neural tissue engineering.