Analysis of the Chinese stock market correlations in high frequency data

Sun Xuelian
{"title":"Analysis of the Chinese stock market correlations in high frequency data","authors":"Sun Xuelian","doi":"10.1109/ITIME.2011.6130818","DOIUrl":null,"url":null,"abstract":"This paper analyzes the correlation structure for various time window intervals using high frequency data of 230 actively traded stocks in Chinese stock market. It is found that the number of nonrandom eigenvalues is more than the developed markets' through the random matrix theory (RMT) analysis. It is also found that the eigenvector components corresponding to the largest eigenvalue cannot be regarded as describing a broad ‘index’ composed of all the stocks as usual. And the analysis of inverse participation ratio (IPR) also proved the above conclusion. Its IPR values are in noise level in the high frequency region.","PeriodicalId":170838,"journal":{"name":"2011 IEEE International Symposium on IT in Medicine and Education","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on IT in Medicine and Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITIME.2011.6130818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper analyzes the correlation structure for various time window intervals using high frequency data of 230 actively traded stocks in Chinese stock market. It is found that the number of nonrandom eigenvalues is more than the developed markets' through the random matrix theory (RMT) analysis. It is also found that the eigenvector components corresponding to the largest eigenvalue cannot be regarded as describing a broad ‘index’ composed of all the stocks as usual. And the analysis of inverse participation ratio (IPR) also proved the above conclusion. Its IPR values are in noise level in the high frequency region.
中国股市高频数据相关性分析
本文利用中国股市230只活跃交易股票的高频数据,分析了不同时间窗区间的相关结构。通过随机矩阵理论(RMT)分析,发现我国市场的非随机特征值数量多于发达市场。还发现,与最大特征值相对应的特征向量分量不能像通常那样被视为描述由所有股票组成的广义“指数”。对逆向参与率(IPR)的分析也证明了上述结论。其IPR值在高频区域处于噪声级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信