The effect of autoencoders over reducing the dimensionality of a dermatology data set

Abdullah Çalıskan, H. Badem, A. Basturk, M. E. Yuksel
{"title":"The effect of autoencoders over reducing the dimensionality of a dermatology data set","authors":"Abdullah Çalıskan, H. Badem, A. Basturk, M. E. Yuksel","doi":"10.1109/TIPTEKNO.2016.7863101","DOIUrl":null,"url":null,"abstract":"The effect of using autoencoders for dimensionality reduction of a medical data set is investigated. A stack of two autoencoders has been trained for popular benchmark medical data set for dermatological disease diagnosis. The improvement of the presented approach has been visualized by the Principal Component Analysis method. Results shows that the use of a autoencoders significantly improves the accuracy of dermatological disease diagnosis.","PeriodicalId":431660,"journal":{"name":"2016 Medical Technologies National Congress (TIPTEKNO)","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Medical Technologies National Congress (TIPTEKNO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIPTEKNO.2016.7863101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The effect of using autoencoders for dimensionality reduction of a medical data set is investigated. A stack of two autoencoders has been trained for popular benchmark medical data set for dermatological disease diagnosis. The improvement of the presented approach has been visualized by the Principal Component Analysis method. Results shows that the use of a autoencoders significantly improves the accuracy of dermatological disease diagnosis.
自动编码器对降低皮肤病学数据集维数的影响
研究了使用自编码器对医疗数据集进行降维的效果。针对流行的皮肤病诊断基准医疗数据集,训练了两个自编码器的堆栈。采用主成分分析法对该方法进行了改进。结果表明,使用自编码器可显著提高皮肤病诊断的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信