The Sum-Line Extrapolative Algorithm and Its Application to Statistical Classification Problems

L. R. Talbert
{"title":"The Sum-Line Extrapolative Algorithm and Its Application to Statistical Classification Problems","authors":"L. R. Talbert","doi":"10.1109/TSSC.1970.300345","DOIUrl":null,"url":null,"abstract":"The sum-line algorithm (SLA) for use with an adaptive linear threshold element is shown experimentally to have excellent extrapolative properties when applied to two-class multivariate Gaussian pattern-classification problems, even when the number of sample patterns is severely limited. The algorithm iteratively adapts the desired analog-output sum of the threshold element while simultaneously adapting the weights of the element. The algorithm converges toward a solution weight vector. It is shown experimentally that this vector tends toward the solution provided by the least-mean-square (LMS) algorithm or that provided by the matched-filter (MF) algorithm, whichever is best able to extrapolate from a given set of sample patterns to patterns that are derived from the same statistical populations but are not included in the sample set.","PeriodicalId":120916,"journal":{"name":"IEEE Trans. Syst. Sci. Cybern.","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1970-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Syst. Sci. Cybern.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSSC.1970.300345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The sum-line algorithm (SLA) for use with an adaptive linear threshold element is shown experimentally to have excellent extrapolative properties when applied to two-class multivariate Gaussian pattern-classification problems, even when the number of sample patterns is severely limited. The algorithm iteratively adapts the desired analog-output sum of the threshold element while simultaneously adapting the weights of the element. The algorithm converges toward a solution weight vector. It is shown experimentally that this vector tends toward the solution provided by the least-mean-square (LMS) algorithm or that provided by the matched-filter (MF) algorithm, whichever is best able to extrapolate from a given set of sample patterns to patterns that are derived from the same statistical populations but are not included in the sample set.
和线外推算法及其在统计分类问题中的应用
与自适应线性阈值元素一起使用的和线算法(SLA)在应用于两类多变量高斯模式分类问题时,即使在样本模式数量严重受限的情况下,也具有出色的外推性。该算法迭代地适应阈值元素的期望模拟输出和,同时适应元素的权重。该算法收敛于一个解权向量。实验表明,该向量倾向于最小均方(LMS)算法提供的解决方案或匹配滤波器(MF)算法提供的解决方案,无论哪种方法最能从给定的一组样本模式推断出来自相同统计总体但不包括在样本集中的模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信