Location estimation of sensor nodes using learning movement patterns

R. Arthi, K. Murugan
{"title":"Location estimation of sensor nodes using learning movement patterns","authors":"R. Arthi, K. Murugan","doi":"10.1109/TECHSYM.2010.5469217","DOIUrl":null,"url":null,"abstract":"The definition of a localization system among sensor nodes is a fundamental issue for many applications of wireless sensor networks (WSNs). Because sensor networks may be deployed in inaccessible area the position of sensor nodes may not be predetermined. Thus, a localization system is required in order to provide position information to the nodes. The cost and limited energy resource associated with common, mobile nodes prohibits them from carrying relatively expensive devices such as Global Positioning System (GPS). This paper proposes a mechanism that allows non-GPS-equipped nodes in the network to derive their approximated locations from a limited number of GPS-equipped nodes. Non-GPS nodes estimate the distance by measuring the Received Signal Strength Indicator (RSSI).In our method, Hidden Markov Model (HMM) is used to estimate the approximated location of distance estimates with the help of mobility models. Simulation studies show that our solution is capable of producing good estimates-equal or better.","PeriodicalId":262830,"journal":{"name":"2010 IEEE Students Technology Symposium (TechSym)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Students Technology Symposium (TechSym)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TECHSYM.2010.5469217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The definition of a localization system among sensor nodes is a fundamental issue for many applications of wireless sensor networks (WSNs). Because sensor networks may be deployed in inaccessible area the position of sensor nodes may not be predetermined. Thus, a localization system is required in order to provide position information to the nodes. The cost and limited energy resource associated with common, mobile nodes prohibits them from carrying relatively expensive devices such as Global Positioning System (GPS). This paper proposes a mechanism that allows non-GPS-equipped nodes in the network to derive their approximated locations from a limited number of GPS-equipped nodes. Non-GPS nodes estimate the distance by measuring the Received Signal Strength Indicator (RSSI).In our method, Hidden Markov Model (HMM) is used to estimate the approximated location of distance estimates with the help of mobility models. Simulation studies show that our solution is capable of producing good estimates-equal or better.
使用学习运动模式的传感器节点位置估计
传感器节点间定位系统的定义是许多无线传感器网络应用中的一个基本问题。由于传感器网络可能部署在不可接近的区域,因此传感器节点的位置可能无法预先确定。因此,需要一个定位系统,以便向节点提供位置信息。与普通移动节点相关的成本和有限的能源使得它们无法携带相对昂贵的设备,如全球定位系统(GPS)。本文提出了一种机制,允许网络中未配备gps的节点从有限数量的配备gps的节点中获得其近似位置。非gps节点通过测量接收信号强度指标(RSSI)来估计距离。在我们的方法中,隐马尔可夫模型(HMM)在移动模型的帮助下估计距离估计的近似位置。仿真研究表明,我们的解决方案能够产生良好的估计-相等或更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信