Fault Diagnostics of Wind Turbine Drive-Train using Multivariate Signal Processing

R. Maheswari, R. Umamaheswari
{"title":"Fault Diagnostics of Wind Turbine Drive-Train using Multivariate Signal Processing","authors":"R. Maheswari, R. Umamaheswari","doi":"10.20855//IJAV.2019.24.21527","DOIUrl":null,"url":null,"abstract":"The vibration measured from wind turbine drivetrain components is a mixture of multiple frequency modes. In\npractice, in wind turbine drivetrain condition monitoring systems, multiple accelerometer sensors are used to measure the vibration. Inter-channel common modes are not processed in the standard single-channel empirical mode\ndecomposition (EMD) and it suffers from mode mixing and mode misalignment. Inter-channel correlation implies\nthe causation of vibration mode shapes. Multivariate EMD (MEMD) possesses an enhanced spatial and spectral\ncoherence. The mode alignment property of MEMD is used to process the inter-channel common modes, thus\nMEMD overcomes the limitation of mode misalignment in single-channel EMD. Still, MEMD exhibits a degree\nof mode mixing. White noise powers are added in separate channels to lessen the mode mixing. In this research,\na novel multivariate signal processing technique, noise-assisted multivariate empirical mode signal decomposition\n(NA-MEMD) with a competent nonlinear Teager-Kaiser energy operator (NLTKEO), is proposed and tested for\ntruthful extraction of instantaneous frequency and instantaneous amplitude features, and thereby ensures superior\nfault diagnosis performance. The dyadic filter bank structure of the proposed NA-MEMD decomposes the nonstationary vibrations effectively. The proposed method is used to predict the surface damage pattern embedded in\nmulti-source vibrations at a low-speed planetary gear stage. The effectiveness of the proposed algorithm is tested\nwith NREL GRC wind turbine condition monitoring benchmark datasets.","PeriodicalId":227331,"journal":{"name":"June 2019","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"June 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20855//IJAV.2019.24.21527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The vibration measured from wind turbine drivetrain components is a mixture of multiple frequency modes. In practice, in wind turbine drivetrain condition monitoring systems, multiple accelerometer sensors are used to measure the vibration. Inter-channel common modes are not processed in the standard single-channel empirical mode decomposition (EMD) and it suffers from mode mixing and mode misalignment. Inter-channel correlation implies the causation of vibration mode shapes. Multivariate EMD (MEMD) possesses an enhanced spatial and spectral coherence. The mode alignment property of MEMD is used to process the inter-channel common modes, thus MEMD overcomes the limitation of mode misalignment in single-channel EMD. Still, MEMD exhibits a degree of mode mixing. White noise powers are added in separate channels to lessen the mode mixing. In this research, a novel multivariate signal processing technique, noise-assisted multivariate empirical mode signal decomposition (NA-MEMD) with a competent nonlinear Teager-Kaiser energy operator (NLTKEO), is proposed and tested for truthful extraction of instantaneous frequency and instantaneous amplitude features, and thereby ensures superior fault diagnosis performance. The dyadic filter bank structure of the proposed NA-MEMD decomposes the nonstationary vibrations effectively. The proposed method is used to predict the surface damage pattern embedded in multi-source vibrations at a low-speed planetary gear stage. The effectiveness of the proposed algorithm is tested with NREL GRC wind turbine condition monitoring benchmark datasets.
基于多变量信号处理的风电传动系统故障诊断
从风力涡轮机传动系统部件测量的振动是多种频率模式的混合。在实际应用中,在风力发电机组动力传动系统状态监测系统中,通常使用多个加速度传感器来测量振动。标准的单通道经验模态分解(EMD)不处理通道间共模态,存在模态混叠和模态失调问题。通道间的相关性暗示了振动模态振型的原因。多元EMD (MEMD)具有增强的空间相干性和频谱相干性。利用MEMD的模式对准特性处理通道间的共模,克服了单通道EMD模式不对准的局限性。然而,MEMD显示出一定程度的模式混合。白噪声功率在单独的通道中添加,以减少模式混合。在本研究中,提出了一种新的多元信号处理技术——基于非线性Teager-Kaiser能量算子的噪声辅助多元经验模态信号分解(NA-MEMD),并对其进行了测试,以真实提取瞬时频率和瞬时幅度特征,从而保证了较好的故障诊断性能。所提出的NA-MEMD的并进滤波器组结构能有效地分解非平稳振动。将该方法应用于低速行星齿轮级多源振动的表面损伤模式预测。通过NREL GRC风电机组状态监测基准数据集验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信