Stock market trend prediction using a sparse Bayesian framework

Ivana P. Markovic, Milos B. Stojanovic, M. Bozic
{"title":"Stock market trend prediction using a sparse Bayesian framework","authors":"Ivana P. Markovic, Milos B. Stojanovic, M. Bozic","doi":"10.1109/NEUREL.2014.7011508","DOIUrl":null,"url":null,"abstract":"The aim of this study is to develop a relevance vector machine-a RVM classifier for trend prediction of the BELEX15 index of the Belgrade Stock Exchange. In addition, the RVM model is compared to two `similar' methods: support vector machines - SVMs and least squares support vector machines - LS-SVMs to analyze their classification precisions and complexity. The test results indicate tha tRVMs outperform benchmarking models and are suitable for short-term stock market trend predictions.","PeriodicalId":402208,"journal":{"name":"12th Symposium on Neural Network Applications in Electrical Engineering (NEUREL)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th Symposium on Neural Network Applications in Electrical Engineering (NEUREL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2014.7011508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The aim of this study is to develop a relevance vector machine-a RVM classifier for trend prediction of the BELEX15 index of the Belgrade Stock Exchange. In addition, the RVM model is compared to two `similar' methods: support vector machines - SVMs and least squares support vector machines - LS-SVMs to analyze their classification precisions and complexity. The test results indicate tha tRVMs outperform benchmarking models and are suitable for short-term stock market trend predictions.
基于稀疏贝叶斯框架的股票市场趋势预测
本研究的目的是开发一个相关向量机-一个用于预测贝尔格莱德证券交易所BELEX15指数趋势的RVM分类器。此外,将RVM模型与两种“相似”的方法:支持向量机(svm)和最小二乘支持向量机(ls - svm)进行比较,分析其分类精度和复杂性。检验结果表明,trvm优于基准模型,适用于短期股市趋势预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信