Optimization of the Task Allocation Process in VEC with the GWO Bioinspired Algorithm

D. Lieira, M. S. Quessada, L. H. Nakamura, Sandra Sampaio, R. D. De Grande, R. Meneguette
{"title":"Optimization of the Task Allocation Process in VEC with the GWO Bioinspired Algorithm","authors":"D. Lieira, M. S. Quessada, L. H. Nakamura, Sandra Sampaio, R. D. De Grande, R. Meneguette","doi":"10.23919/CISTI58278.2023.10211659","DOIUrl":null,"url":null,"abstract":"Vehicular Edge Computing (VEC) helps intelligent transportation systems deliver information and process data efficiently, at low latency. However, with the continuous exponential increases in number of interconnected intelligent vehicles, managing massive amounts of data generated in vehicular networks becomes a great challenge. This work proposes ATARY, a method for optimizing task allocation processes in VECs using the Grey Wolf optimization (GWO) algorithm. GWO has been especially adapted to model VEC task allocation as wolves’ hunting behaviour. Through a number of vehicle mobility and communication simulations, we show that ATARY is more efficient than some of the most widely used state-of-the-art mechanisms in number of allocated tasks, denied/lost services and resource usage.","PeriodicalId":121747,"journal":{"name":"2023 18th Iberian Conference on Information Systems and Technologies (CISTI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 18th Iberian Conference on Information Systems and Technologies (CISTI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CISTI58278.2023.10211659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Vehicular Edge Computing (VEC) helps intelligent transportation systems deliver information and process data efficiently, at low latency. However, with the continuous exponential increases in number of interconnected intelligent vehicles, managing massive amounts of data generated in vehicular networks becomes a great challenge. This work proposes ATARY, a method for optimizing task allocation processes in VECs using the Grey Wolf optimization (GWO) algorithm. GWO has been especially adapted to model VEC task allocation as wolves’ hunting behaviour. Through a number of vehicle mobility and communication simulations, we show that ATARY is more efficient than some of the most widely used state-of-the-art mechanisms in number of allocated tasks, denied/lost services and resource usage.
基于GWO仿生算法的VEC任务分配过程优化
车辆边缘计算(VEC)帮助智能交通系统以低延迟高效地传递信息和处理数据。然而,随着互联智能汽车数量的持续指数增长,管理车联网中产生的大量数据成为一个巨大的挑战。本文提出了一种使用灰狼优化(GWO)算法优化VECs任务分配过程的方法ATARY。GWO特别适用于将VEC任务分配建模为狼的狩猎行为。通过一系列车辆移动性和通信模拟,我们表明,在分配任务数量、拒绝/丢失服务和资源使用方面,ATARY比一些最广泛使用的最先进机制更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信