Using case-based research for agent-based modelling

S. Purchase, Sara Denize, D. Olaru
{"title":"Using case-based research for agent-based modelling","authors":"S. Purchase, Sara Denize, D. Olaru","doi":"10.1108/S1069-096420140000021010","DOIUrl":null,"url":null,"abstract":"Abstract \nThis chapter outlines a method for developing simulation code from case-based data using narrative sequence analysis. This analytical method allows researchers to systematically specify the ‘real-world’ behaviours and causal mechanisms that describe the research problem and translate this mechanism into simulation code. An illustrative example of the process used for code development from case-based data is detailed using a well-documented case of photovoltaic innovation. Narrative sequence analysis is used to analyse case data. Micro-sequences are identified and simplified. Each micro-sequence is presented first in pseudo-code and then in simulation code. This chapter demonstrates the coding process using Netlogo code. Narrative sequence analysis provides a rigorous and systematic approach to identifying the underlying mechanisms to be described when building simulation models. This analytical technique also provides necessary and sufficient information to write simulation code. This chapter addresses a current gap in the methodology literature by including case data within agent-based model building processes. It benefits B2B marketing researchers by outlining guiding processes and principles in the use of case-based data to build simulation models.","PeriodicalId":222006,"journal":{"name":"Advances in Business Marketing and Purchasing","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Business Marketing and Purchasing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/S1069-096420140000021010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This chapter outlines a method for developing simulation code from case-based data using narrative sequence analysis. This analytical method allows researchers to systematically specify the ‘real-world’ behaviours and causal mechanisms that describe the research problem and translate this mechanism into simulation code. An illustrative example of the process used for code development from case-based data is detailed using a well-documented case of photovoltaic innovation. Narrative sequence analysis is used to analyse case data. Micro-sequences are identified and simplified. Each micro-sequence is presented first in pseudo-code and then in simulation code. This chapter demonstrates the coding process using Netlogo code. Narrative sequence analysis provides a rigorous and systematic approach to identifying the underlying mechanisms to be described when building simulation models. This analytical technique also provides necessary and sufficient information to write simulation code. This chapter addresses a current gap in the methodology literature by including case data within agent-based model building processes. It benefits B2B marketing researchers by outlining guiding processes and principles in the use of case-based data to build simulation models.
基于案例研究的智能体建模
本章概述了一种使用叙事序列分析从基于案例的数据开发仿真代码的方法。这种分析方法允许研究人员系统地指定描述研究问题的“现实世界”行为和因果机制,并将这种机制转化为模拟代码。从基于案例的数据进行代码开发的过程的一个说明性示例使用了一个记录良好的光伏创新案例进行详细说明。采用叙事序列分析法对案例数据进行分析。微序列的识别和简化。每个微序列首先用伪代码表示,然后用仿真代码表示。本章演示了使用Netlogo代码的编码过程。叙述序列分析提供了一种严格而系统的方法来确定在构建模拟模型时要描述的潜在机制。这种分析技术还为编写仿真代码提供了必要和充分的信息。本章通过在基于代理的模型构建过程中包含案例数据来解决当前方法论文献中的空白。它概述了使用基于案例的数据来构建模拟模型的指导过程和原则,从而使B2B营销研究人员受益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信