Supertagging for domain adaptation: an approach with law texts

Kyoko Sugisaki
{"title":"Supertagging for domain adaptation: an approach with law texts","authors":"Kyoko Sugisaki","doi":"10.1145/3086512.3086543","DOIUrl":null,"url":null,"abstract":"In this paper, we present a German supertagger that analyses syntactic functions in linear order. We apply a statistical sequential model, conditional random fields (CRF), to Swiss law texts, in a real world scenario in which the training data of the domain is missing. We show that the small amount of in-domain training data that was informed by linguistic hard and soft constraints and domain constraints achieved a label accuracy of 90% in the domain data, thus outperforming state-of-the-art parsers.","PeriodicalId":425187,"journal":{"name":"Proceedings of the 16th edition of the International Conference on Articial Intelligence and Law","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th edition of the International Conference on Articial Intelligence and Law","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3086512.3086543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we present a German supertagger that analyses syntactic functions in linear order. We apply a statistical sequential model, conditional random fields (CRF), to Swiss law texts, in a real world scenario in which the training data of the domain is missing. We show that the small amount of in-domain training data that was informed by linguistic hard and soft constraints and domain constraints achieved a label accuracy of 90% in the domain data, thus outperforming state-of-the-art parsers.
领域适应的超标注:一种法律文本的处理方法
本文提出了一个按线性顺序分析句法功能的德语超标注器。我们将一个统计序列模型,条件随机场(CRF),应用于瑞士法律文本,在一个现实世界的场景中,该领域的训练数据缺失。我们表明,由语言硬约束和软约束以及领域约束通知的少量领域内训练数据在领域数据中实现了90%的标签准确性,从而优于最先进的解析器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信