What designers of wafer scale systems should know about local sparing

L. LaForge
{"title":"What designers of wafer scale systems should know about local sparing","authors":"L. LaForge","doi":"10.1109/ICWSI.1994.291259","DOIUrl":null,"url":null,"abstract":"Local sparing is a simple way to organize the redundancy of a fault tolerant system. Any system can be locally spared. Furthermore, local sparing preserves both regularity and planarity. In spite of this, the potential usefulness of local sparing appears to have been overlooked. Suppose that the designer wishes to assure, with high probability, a fault-free copy of the n-element system desired. If local sparing is used then, as proved, i) the resulting area is /spl Theta/(log n) times the area of the system desired; ii) the wire length is /spl Oscr/(/spl radic/(log n)) times the maximum wirelength in the desired system; iii) an optimal diagnosis algorithm identifies the faulty elements in /spl Theta/(n log/sup 2/ n) time; iv) in optimal time /spl Theta/(n log n+number of wires in the desired system), a simple configuration algorithm achieves a fault-free copy of the desired system if and only if a fault-free copy exists. The authors illustrate these results for arrays, binary trees, and hypercubes. In addition, v) if Y denotes the probability of achieving a fault-free copy of the system desired then, using h-fold redundancy, the maximum rate at which elements can fail is ((/spl minus/ln Y)/n)/sup 1/h/. Local sparing is simple, widely-applicable, and low-cost. A disadvantage is that, depending on the system desired, the cost may not be optimal. However, there is strong reason to prefer local sparing over global sparing, and in some cases local sparing is better than more popular approaches to configuration.<<ETX>>","PeriodicalId":183733,"journal":{"name":"Proceedings of 1994 International Conference on Wafer Scale Integration (ICWSI)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 International Conference on Wafer Scale Integration (ICWSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWSI.1994.291259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Local sparing is a simple way to organize the redundancy of a fault tolerant system. Any system can be locally spared. Furthermore, local sparing preserves both regularity and planarity. In spite of this, the potential usefulness of local sparing appears to have been overlooked. Suppose that the designer wishes to assure, with high probability, a fault-free copy of the n-element system desired. If local sparing is used then, as proved, i) the resulting area is /spl Theta/(log n) times the area of the system desired; ii) the wire length is /spl Oscr/(/spl radic/(log n)) times the maximum wirelength in the desired system; iii) an optimal diagnosis algorithm identifies the faulty elements in /spl Theta/(n log/sup 2/ n) time; iv) in optimal time /spl Theta/(n log n+number of wires in the desired system), a simple configuration algorithm achieves a fault-free copy of the desired system if and only if a fault-free copy exists. The authors illustrate these results for arrays, binary trees, and hypercubes. In addition, v) if Y denotes the probability of achieving a fault-free copy of the system desired then, using h-fold redundancy, the maximum rate at which elements can fail is ((/spl minus/ln Y)/n)/sup 1/h/. Local sparing is simple, widely-applicable, and low-cost. A disadvantage is that, depending on the system desired, the cost may not be optimal. However, there is strong reason to prefer local sparing over global sparing, and in some cases local sparing is better than more popular approaches to configuration.<>
晶圆规模系统的设计者应该知道什么是局部节约
局部节约是组织容错系统冗余的一种简单方法。任何系统都可以在局部不受影响。此外,局部节约同时保留了正则性和平面性。尽管如此,局部节约的潜在用处似乎被忽视了。假设设计者希望以高概率保证所期望的n元素系统的无故障副本。如果使用局部节省,那么,如证明的那样,i)产生的面积是/spl Theta/(log n)乘以所需系统的面积;ii)导线长度为/spl Oscr/(/spl径向/(log n))乘以所需系统的最大导线长度;iii)最优诊断算法在/spl Theta/(n log/sup 2/ n)时间内识别故障元件;iv)在最优时间/spl Theta/(n log n+期望系统中的导线数)下,当且仅当存在无故障副本时,简单的配置算法可以实现期望系统的无故障副本。作者举例说明了数组、二叉树和超立方体的这些结果。此外,v)如果Y表示获得所需系统的无故障副本的概率,那么,使用h-fold冗余,元素可能失效的最大比率为((/spl - /ln Y)/n)/sup 1/h/。局部节约简单、广泛适用、成本低。缺点是,根据所需的系统,成本可能不是最优的。然而,有充分的理由选择局部节约而不是全局节约,并且在某些情况下,局部节约比更流行的配置方法更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信