Predictive Runtime Monitoring for Mobile Robots using Logic-Based Bayesian Intent Inference

Han-Ul Yoon, S. Sankaranarayanan
{"title":"Predictive Runtime Monitoring for Mobile Robots using Logic-Based Bayesian Intent Inference","authors":"Han-Ul Yoon, S. Sankaranarayanan","doi":"10.1109/ICRA48506.2021.9561193","DOIUrl":null,"url":null,"abstract":"We propose a predictive runtime monitoring framework that forecasts the distribution of future positions of mobile robots in order to detect and avoid impending property violations such as collisions with obstacles or other agents. Our approach uses a restricted class of temporal logic formulas to represent the likely intentions of the agents along with a combination of temporal logic-based optimal cost path planning and Bayesian inference to compute the probability of these intents given the current trajectory of the robot. First, we construct a large but finite hypothesis space of possible intents represented as temporal logic formulas whose atomic propositions are derived from a detailed map of the robot’s workspace. Next, our approach uses real-time observations of the robot’s position to update a distribution over temporal logic formulae that represent its likely intent. This is performed by using a combination of optimal cost path planning and a Boltzmann noisy rationality model. In this manner, we construct a Bayesian approach to evaluating the posterior probability of various hypotheses given the observed states and actions of the robot. Finally, we predict the future position of the robot by drawing posterior predictive samples using a Monte-Carlo method. We evaluate our framework using two different trajectory datasets that contain multiple scenarios implementing various tasks. The results show that our method can predict future positions precisely and efficiently, so that the computation time for generating a prediction is a tiny fraction of the overall time horizon.","PeriodicalId":108312,"journal":{"name":"2021 IEEE International Conference on Robotics and Automation (ICRA)","volume":"203 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48506.2021.9561193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We propose a predictive runtime monitoring framework that forecasts the distribution of future positions of mobile robots in order to detect and avoid impending property violations such as collisions with obstacles or other agents. Our approach uses a restricted class of temporal logic formulas to represent the likely intentions of the agents along with a combination of temporal logic-based optimal cost path planning and Bayesian inference to compute the probability of these intents given the current trajectory of the robot. First, we construct a large but finite hypothesis space of possible intents represented as temporal logic formulas whose atomic propositions are derived from a detailed map of the robot’s workspace. Next, our approach uses real-time observations of the robot’s position to update a distribution over temporal logic formulae that represent its likely intent. This is performed by using a combination of optimal cost path planning and a Boltzmann noisy rationality model. In this manner, we construct a Bayesian approach to evaluating the posterior probability of various hypotheses given the observed states and actions of the robot. Finally, we predict the future position of the robot by drawing posterior predictive samples using a Monte-Carlo method. We evaluate our framework using two different trajectory datasets that contain multiple scenarios implementing various tasks. The results show that our method can predict future positions precisely and efficiently, so that the computation time for generating a prediction is a tiny fraction of the overall time horizon.
基于逻辑贝叶斯意图推理的移动机器人预测运行监控
我们提出了一个预测运行时监控框架,预测移动机器人未来位置的分布,以检测和避免即将发生的财产侵犯,如与障碍物或其他代理的碰撞。我们的方法使用一类有限的时间逻辑公式来表示代理的可能意图,并结合基于时间逻辑的最优成本路径规划和贝叶斯推理来计算给定机器人当前轨迹的这些意图的概率。首先,我们构建了一个大但有限的假设空间,其中可能意图表示为时间逻辑公式,其原子命题来自机器人工作空间的详细地图。接下来,我们的方法使用机器人位置的实时观察来更新代表其可能意图的时间逻辑公式的分布。这是通过使用最优成本路径规划和玻尔兹曼噪声合理性模型的组合来实现的。通过这种方式,我们构建了一个贝叶斯方法来评估给定机器人的观察状态和动作的各种假设的后验概率。最后,我们利用蒙特卡罗方法绘制后验预测样本来预测机器人未来的位置。我们使用两个不同的轨迹数据集来评估我们的框架,这些数据集包含实现各种任务的多个场景。结果表明,该方法可以准确有效地预测未来的位置,从而使生成预测的计算时间只占整个时间范围的一小部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信