{"title":"Hierarchical Memcapacitive Reservoir Computing Architecture","authors":"S. Tran, C. Teuscher","doi":"10.1109/ICRC.2019.8914716","DOIUrl":null,"url":null,"abstract":"The quest for novel computing architectures is currently driven by (1) machine learning applications and (2) the need to reduce power consumption. To address both needs, we present a novel hierarchical reservoir computing architecture that relies on energy-efficient memcapacitive devices. Reservoir computing is a new brain-inspired machine learning architecture that typically relies on a monolithic, i.e., unstructured, network of devices. We use memcapacitive devices to perform the computations because they do not consume static power. Our results show that hierarchical memcapacitive reservoir computing device networks have a higher kernel quality, outperform monolithic reservoirs by 10%, and reduce the power consumption by a factor of 3.4× on our benchmark tasks. The proposed new architecture is relevant for building novel, adaptive, and power-efficient neuromorphic hardware with applications in embedded systems, the Internet-of-Things, and robotics.","PeriodicalId":297574,"journal":{"name":"2019 IEEE International Conference on Rebooting Computing (ICRC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Rebooting Computing (ICRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRC.2019.8914716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The quest for novel computing architectures is currently driven by (1) machine learning applications and (2) the need to reduce power consumption. To address both needs, we present a novel hierarchical reservoir computing architecture that relies on energy-efficient memcapacitive devices. Reservoir computing is a new brain-inspired machine learning architecture that typically relies on a monolithic, i.e., unstructured, network of devices. We use memcapacitive devices to perform the computations because they do not consume static power. Our results show that hierarchical memcapacitive reservoir computing device networks have a higher kernel quality, outperform monolithic reservoirs by 10%, and reduce the power consumption by a factor of 3.4× on our benchmark tasks. The proposed new architecture is relevant for building novel, adaptive, and power-efficient neuromorphic hardware with applications in embedded systems, the Internet-of-Things, and robotics.