A Novel Algorithm for Generating GVKEY-CIK Link Table

K. Chu, Sipeng Chen, T. Leung
{"title":"A Novel Algorithm for Generating GVKEY-CIK Link Table","authors":"K. Chu, Sipeng Chen, T. Leung","doi":"10.2139/ssrn.3530613","DOIUrl":null,"url":null,"abstract":"This paper presents a do-it-yourself algorithm to generate the historical GVKEY-CIK link table. The proposed algorithm features to pre-classify sample data into different treatment subgroups and utilizes historical firm information available from the source data to increase (reduce) matching efficiency (errors). Simulation results show that our algorithm is superior to applying only conventional name matching operations over the whole sample: 57.5 percent of the overall matching results are error-free ex-ante, and for the remaining 42.5 percent of data, records without Type I errors (with Type II errors) increase (decrease) by 34.0 percent (59.4 percent) when the optimal threshold is used.","PeriodicalId":202880,"journal":{"name":"Research Methods & Methodology in Accounting eJournal","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Methods & Methodology in Accounting eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3530613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a do-it-yourself algorithm to generate the historical GVKEY-CIK link table. The proposed algorithm features to pre-classify sample data into different treatment subgroups and utilizes historical firm information available from the source data to increase (reduce) matching efficiency (errors). Simulation results show that our algorithm is superior to applying only conventional name matching operations over the whole sample: 57.5 percent of the overall matching results are error-free ex-ante, and for the remaining 42.5 percent of data, records without Type I errors (with Type II errors) increase (decrease) by 34.0 percent (59.4 percent) when the optimal threshold is used.
一种生成GVKEY-CIK链路表的新算法
本文提出了一种生成历史GVKEY-CIK链路表的自己动手算法。该算法的特点是将样本数据预先分类为不同的处理子组,并利用源数据中可用的历史企业信息来提高(降低)匹配效率(误差)。仿真结果表明,我们的算法优于仅在整个样本上应用传统的名称匹配操作:57.5%的总体匹配结果是事先无错误的,而对于剩余的42.5%的数据,当使用最佳阈值时,没有类型I错误(类型II错误)的记录增加(减少)34.0%(59.4%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信