V. Georgiev, S. Amoroso, Laia Vilà‐Nadal, Cristoph Busche, L. Cronin, A. Asenov
{"title":"FDSOI molecular flash cell with reduced variability for low power flash applications","authors":"V. Georgiev, S. Amoroso, Laia Vilà‐Nadal, Cristoph Busche, L. Cronin, A. Asenov","doi":"10.1109/ESSDERC.2014.6948833","DOIUrl":null,"url":null,"abstract":"In this work we present a modeling study of a conceptual low power non-volatile memory cell based on inorganic molecular metal oxide clusters (polyoxometalates (POM)) as a storage media embedded in the gate dielectric of a Fully Depleted SOI (FD SOI) with reduced statistical variability. The simulations were carried out using a multi-physics simulation framework, which allows us to evaluate the variability in the programming window of the molecular based flash cell with an 18 nm gate length. We have focused our study on the threshold voltage variability influenced by random dopant fluctuations and random special fluctuations of the molecules in the floating gate of the flash-cell. Our simulation framework and conclusions can be applied not only to POM-based flash cell but also to flash cells based on alternative molecules used as a storage media.","PeriodicalId":262652,"journal":{"name":"2014 44th European Solid State Device Research Conference (ESSDERC)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 44th European Solid State Device Research Conference (ESSDERC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSDERC.2014.6948833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
In this work we present a modeling study of a conceptual low power non-volatile memory cell based on inorganic molecular metal oxide clusters (polyoxometalates (POM)) as a storage media embedded in the gate dielectric of a Fully Depleted SOI (FD SOI) with reduced statistical variability. The simulations were carried out using a multi-physics simulation framework, which allows us to evaluate the variability in the programming window of the molecular based flash cell with an 18 nm gate length. We have focused our study on the threshold voltage variability influenced by random dopant fluctuations and random special fluctuations of the molecules in the floating gate of the flash-cell. Our simulation framework and conclusions can be applied not only to POM-based flash cell but also to flash cells based on alternative molecules used as a storage media.