Fast Solution of Linear Systems with Analog Resistive Switching Memory (RRAM)

Zhong Sun, G. Pedretti, D. Ielmini
{"title":"Fast Solution of Linear Systems with Analog Resistive Switching Memory (RRAM)","authors":"Zhong Sun, G. Pedretti, D. Ielmini","doi":"10.1109/ICRC.2019.8914709","DOIUrl":null,"url":null,"abstract":"The in-memory solution of linear systems with analog resistive switching memory in one computational step has been recently reported. In this work, we investigate the time complexity of solving linear systems with the circuit, based on the feedback theory of amplifiers. The result shows that the computing time is explicitly independent on the problem size N, rather it is dominated by the minimal eigenvalue of an associated matrix. By addressing the Toeplitz matrix and the Wishart matrix, we show that the computing time increases with log(N) or N1/2, respectively, thus indicating a significant speed-up of in-memory computing over classical digital computing for solving linear systems. For sparse positive-definite matrix that is targeted by a quantum computing algorithm, the in-memory computing circuit also shows a computing time superiority. These results support in-memory computing as a strong candidate for fast and energy-efficient accelerators of big data analytics and machine learning.","PeriodicalId":297574,"journal":{"name":"2019 IEEE International Conference on Rebooting Computing (ICRC)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Rebooting Computing (ICRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRC.2019.8914709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The in-memory solution of linear systems with analog resistive switching memory in one computational step has been recently reported. In this work, we investigate the time complexity of solving linear systems with the circuit, based on the feedback theory of amplifiers. The result shows that the computing time is explicitly independent on the problem size N, rather it is dominated by the minimal eigenvalue of an associated matrix. By addressing the Toeplitz matrix and the Wishart matrix, we show that the computing time increases with log(N) or N1/2, respectively, thus indicating a significant speed-up of in-memory computing over classical digital computing for solving linear systems. For sparse positive-definite matrix that is targeted by a quantum computing algorithm, the in-memory computing circuit also shows a computing time superiority. These results support in-memory computing as a strong candidate for fast and energy-efficient accelerators of big data analytics and machine learning.
基于模拟电阻性开关存储器(RRAM)的线性系统快速求解
具有模拟电阻开关存储器的线性系统的内存解在一个计算步骤中得到了最近的报道。在这项工作中,我们基于放大器的反馈理论,研究了用电路求解线性系统的时间复杂度。结果表明,计算时间与问题大小N显式无关,而是由关联矩阵的最小特征值支配。通过求解Toeplitz矩阵和Wishart矩阵,我们表明计算时间分别以log(N)或N1/2增加,从而表明在求解线性系统时内存计算比经典数字计算有显着的加速。对于量子计算算法所针对的稀疏正定矩阵,内存计算电路也显示出计算时间上的优势。这些结果支持内存计算作为大数据分析和机器学习的快速和节能加速器的有力候选。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信