Implementation of Kalman filter with multicore system on chip using function — Level parallelism

M. W. Majid, Golrokh Mirzaei, M. Jamali
{"title":"Implementation of Kalman filter with multicore system on chip using function — Level parallelism","authors":"M. W. Majid, Golrokh Mirzaei, M. Jamali","doi":"10.1109/EIT.2013.6632705","DOIUrl":null,"url":null,"abstract":"Kalman filter is a very popular estimation technique used widely for linear tracking. It uses a set of noisy data as input and produces state estimates with minimum error rate. This study aims to explore how to implement implicit parallelism in multi-core processor and object tracking with task-level parallelism and Kalman Filter is parallelized on Multi-core system on chip. The novelty of this study is the introduction of Adaptive Load Balancing Approach (ALBA) to compute the nonrecursive algorithm. This approach can be applied on all form of multicore computers. The parallel Kalman Filter is developed in C# for multicore using .Net framework 4.0. It uses combination of C and CUDA for its implementation on GPU.","PeriodicalId":201202,"journal":{"name":"IEEE International Conference on Electro-Information Technology , EIT 2013","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Electro-Information Technology , EIT 2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIT.2013.6632705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Kalman filter is a very popular estimation technique used widely for linear tracking. It uses a set of noisy data as input and produces state estimates with minimum error rate. This study aims to explore how to implement implicit parallelism in multi-core processor and object tracking with task-level parallelism and Kalman Filter is parallelized on Multi-core system on chip. The novelty of this study is the introduction of Adaptive Load Balancing Approach (ALBA) to compute the nonrecursive algorithm. This approach can be applied on all form of multicore computers. The parallel Kalman Filter is developed in C# for multicore using .Net framework 4.0. It uses combination of C and CUDA for its implementation on GPU.
用函数级并行实现多核卡尔曼滤波
卡尔曼滤波是一种非常流行的估计技术,广泛用于线性跟踪。它使用一组有噪声的数据作为输入,产生错误率最小的状态估计。本研究旨在探讨如何在多核处理器上实现隐式并行,并在片上多核系统上并行化利用任务级并行和卡尔曼滤波实现目标跟踪。本研究的新颖之处在于引入自适应负载平衡方法(ALBA)来计算非递归算法。这种方法可以应用于所有形式的多核计算机。并行卡尔曼滤波器是使用。net framework 4.0在c#中开发的。它使用C和CUDA的组合在GPU上实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信