Low power CMOS off-chip drivers with slew-rate difference

Rung-Bin Lin, Jinq-Chang Chen
{"title":"Low power CMOS off-chip drivers with slew-rate difference","authors":"Rung-Bin Lin, Jinq-Chang Chen","doi":"10.1109/ASPDAC.1999.759987","DOIUrl":null,"url":null,"abstract":"This paper proposes an approach to reduce the short circuit current of CMOS off-chip drivers by individually controlling the input slew rates to the P and N channel transistors that drive the output pad. The slew rates are deliberately designed such that the N(P) transistor at the output stage will be turned off faster than the P(N) transistor is turned on for low-to-high (high-to-low) output transitions. It is demonstrated experimentally by HSPICE simulation that the off-chip driver designed by the proposed approach not only produces viable power-delay products, but also results in smaller noise.","PeriodicalId":201352,"journal":{"name":"Proceedings of the ASP-DAC '99 Asia and South Pacific Design Automation Conference 1999 (Cat. No.99EX198)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ASP-DAC '99 Asia and South Pacific Design Automation Conference 1999 (Cat. No.99EX198)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.1999.759987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper proposes an approach to reduce the short circuit current of CMOS off-chip drivers by individually controlling the input slew rates to the P and N channel transistors that drive the output pad. The slew rates are deliberately designed such that the N(P) transistor at the output stage will be turned off faster than the P(N) transistor is turned on for low-to-high (high-to-low) output transitions. It is demonstrated experimentally by HSPICE simulation that the off-chip driver designed by the proposed approach not only produces viable power-delay products, but also results in smaller noise.
具有回转速率差的低功耗CMOS片外驱动器
本文提出了一种通过单独控制驱动输出板的P和N通道晶体管的输入转换率来减小CMOS片外驱动器短路电流的方法。转换率经过精心设计,使得输出级的N(P)晶体管关断的速度比低到高(高到低)输出转换的P(N)晶体管打开的速度快。HSPICE仿真实验表明,采用该方法设计的片外驱动器不仅产生可行的功率延迟产品,而且具有较小的噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信