Camera-based bidirectional reflectance measurement for road surface reflectivity classification

Martin Roser, Philip Lenz
{"title":"Camera-based bidirectional reflectance measurement for road surface reflectivity classification","authors":"Martin Roser, Philip Lenz","doi":"10.1109/IVS.2010.5548129","DOIUrl":null,"url":null,"abstract":"In this paper we propose a novel framework for road reflectivity classification in cluttered traffic scenarios by measuring the bidirectional reflectance distribution function of road surfaces from inside a moving vehicle. The predominant restrictions in our application are a strongly limited field of observations and a weakly defined illumination environment. To overcome these problems, we estimate the parameters of an extended Oren-Nayar model that considers the diffuse and specular behavior of real-world surfaces and extrapolate the surface reflectivity measurements to unobservable angle combinations. Model ambiguities are decreased by utilizing standardized as well as customized reflection characteristics. In contrast to existing approaches that require special measurement setups, our approach can be implemented in vision-based driver assistance systems using radiometrically uncalibrated gray value cameras and GPS information. The effectiveness of our approach is demonstrated by a successful classification of the road surface reflectance of expressway scenes with low error rates.","PeriodicalId":123266,"journal":{"name":"2010 IEEE Intelligent Vehicles Symposium","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2010.5548129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper we propose a novel framework for road reflectivity classification in cluttered traffic scenarios by measuring the bidirectional reflectance distribution function of road surfaces from inside a moving vehicle. The predominant restrictions in our application are a strongly limited field of observations and a weakly defined illumination environment. To overcome these problems, we estimate the parameters of an extended Oren-Nayar model that considers the diffuse and specular behavior of real-world surfaces and extrapolate the surface reflectivity measurements to unobservable angle combinations. Model ambiguities are decreased by utilizing standardized as well as customized reflection characteristics. In contrast to existing approaches that require special measurement setups, our approach can be implemented in vision-based driver assistance systems using radiometrically uncalibrated gray value cameras and GPS information. The effectiveness of our approach is demonstrated by a successful classification of the road surface reflectance of expressway scenes with low error rates.
基于摄像头的双向反射率测量路面反射率分类
本文提出了一种新的道路反射率分类框架,该框架通过测量移动车辆内部路面的双向反射率分布函数来实现混乱交通场景下的道路反射率分类。在我们的应用中主要的限制是一个非常有限的观测领域和一个弱定义的照明环境。为了克服这些问题,我们估计了一个扩展的Oren-Nayar模型的参数,该模型考虑了现实世界表面的漫反射和镜面行为,并将表面反射率测量外推到不可观察的角度组合。利用标准化和自定义反射特性减少了模型的模糊性。与需要特殊测量设置的现有方法相比,我们的方法可以在基于视觉的驾驶员辅助系统中实现,使用辐射未校准的灰度值相机和GPS信息。该方法的有效性通过对高速公路场景路面反射率的低错误率分类得到验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信