Data-driven Kalman Filter with Kernel-based Koopman Operators for Nonlinear Robot Systems

Wei Jiang, Xinglong Zhang, Zhen Zuo, Meiping Shi, Shaojing Su
{"title":"Data-driven Kalman Filter with Kernel-based Koopman Operators for Nonlinear Robot Systems","authors":"Wei Jiang, Xinglong Zhang, Zhen Zuo, Meiping Shi, Shaojing Su","doi":"10.1109/IROS47612.2022.9981408","DOIUrl":null,"url":null,"abstract":"Designing the Kalman filter for nonlinear robot systems with theoretical guarantees is challenging, especially when the dynamics model is unavailable. This paper proposes a data-driven Kalman filter algorithm using kernel-based Koop-man operators for unknown nonlinear robot systems. First, the Koopman operator using sparse kernel-based extended dynamic decomposition (EDMD) is presented to learn the unknown dynamics with input-output datasets. Unlike classic EDMD, which requires manual selection of kernel functions, our approach automatically constructs kernel functions using an approximate linear dependency analysis method. The resulting Koopman model is a linear dynamic evolution in the kernel space, enabling us to address the nonlinear filtering problem using the standard linear Kalman filter design process. Despite this, our approach generates a nonlinear filtering law thanks to the adopted nonlinear kernel functions. Finally, the effectiveness of the proposed approach is validated by simulated experiments.","PeriodicalId":431373,"journal":{"name":"2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS47612.2022.9981408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Designing the Kalman filter for nonlinear robot systems with theoretical guarantees is challenging, especially when the dynamics model is unavailable. This paper proposes a data-driven Kalman filter algorithm using kernel-based Koop-man operators for unknown nonlinear robot systems. First, the Koopman operator using sparse kernel-based extended dynamic decomposition (EDMD) is presented to learn the unknown dynamics with input-output datasets. Unlike classic EDMD, which requires manual selection of kernel functions, our approach automatically constructs kernel functions using an approximate linear dependency analysis method. The resulting Koopman model is a linear dynamic evolution in the kernel space, enabling us to address the nonlinear filtering problem using the standard linear Kalman filter design process. Despite this, our approach generates a nonlinear filtering law thanks to the adopted nonlinear kernel functions. Finally, the effectiveness of the proposed approach is validated by simulated experiments.
非线性机器人系统的基于核库普曼算子的数据驱动卡尔曼滤波
设计具有理论保证的非线性机器人系统的卡尔曼滤波器是一个具有挑战性的问题,特别是在动力学模型不可用的情况下。针对未知非线性机器人系统,提出了一种基于核库曼算子的数据驱动卡尔曼滤波算法。首先,提出了基于稀疏核的扩展动态分解(EDMD)的Koopman算子来学习输入输出数据集的未知动态。与需要手动选择核函数的经典EDMD不同,我们的方法使用近似线性相关分析方法自动构建核函数。所得到的库普曼模型是核空间中的线性动态演化,使我们能够使用标准的线性卡尔曼滤波器设计过程来解决非线性滤波问题。尽管如此,由于采用了非线性核函数,我们的方法产生了非线性滤波律。最后,通过仿真实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信