Nishchay H. Sule, T. Powell, S. Hemmady, P. Zarkesh-Ha
{"title":"Predicting the Tolerance of Extreme Electromagnetic Interference on MOSFETs","authors":"Nishchay H. Sule, T. Powell, S. Hemmady, P. Zarkesh-Ha","doi":"10.1109/ISVLSI.2018.00114","DOIUrl":null,"url":null,"abstract":"Extreme Electromagnetic Interference (EEMI) can cause device malfunction due to reparable upsets before any permanent hardware damage occurs to electronic devices. In this paper, a predictive model is developed to characterize the impact of EEMI on Metal-Oxide Semiconductor Field-Effect Transistors (MOSFETs) prior to any such permanent damage. The predictive model determines the onset of tolerance limits of EEMI on the Ion/Ioff ratio of a MOSFET for a given technology node, using only the most fundamental device parameters - such as the threshold voltage and power supply. The developed model is successfully compared against measurement data from a device fabricated using 350nm standard CMOS process through TSMC. Based on the predictive model the tolerance of the EEMI injected power in a MOSFET reduces due to technology scaling, starting from 9.7dBm at 350nm, and down to -1.7dBm at 65nm technology node.","PeriodicalId":114330,"journal":{"name":"2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2018.00114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Extreme Electromagnetic Interference (EEMI) can cause device malfunction due to reparable upsets before any permanent hardware damage occurs to electronic devices. In this paper, a predictive model is developed to characterize the impact of EEMI on Metal-Oxide Semiconductor Field-Effect Transistors (MOSFETs) prior to any such permanent damage. The predictive model determines the onset of tolerance limits of EEMI on the Ion/Ioff ratio of a MOSFET for a given technology node, using only the most fundamental device parameters - such as the threshold voltage and power supply. The developed model is successfully compared against measurement data from a device fabricated using 350nm standard CMOS process through TSMC. Based on the predictive model the tolerance of the EEMI injected power in a MOSFET reduces due to technology scaling, starting from 9.7dBm at 350nm, and down to -1.7dBm at 65nm technology node.