Interactive methods efficiency analysis of multicriteria optimization of electric energy systems static operating modes

A. Chernavin, N. Korovkin
{"title":"Interactive methods efficiency analysis of multicriteria optimization of electric energy systems static operating modes","authors":"A. Chernavin, N. Korovkin","doi":"10.1109/EICONRUSNW.2016.7448238","DOIUrl":null,"url":null,"abstract":"Genetic algorithm (GA) is widely used in the electric energy systems. GA can serve to find solution of optimization problem with the reasonable time and resources. GA is defined with parameters and selection criteria. The dispatcher receives the results of the optimization with using GA for the subsequent analysis and using in electric energy system. In recent years the mathematicians achieved the acceleration of algorithm work using interactive methods. The possibility of using interactive methods for the electric energy systems is the task of this work. In this paper, we study complication of GA, compare use of interactive methods and GA, analyze advantages and shortcomings of interactive methods. Results show that we can successfully use the weighed Tchebyshev's metrics and PBI for problems of optimization electric energy systems static operating modes.","PeriodicalId":262452,"journal":{"name":"2016 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (EIConRusNW)","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (EIConRusNW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EICONRUSNW.2016.7448238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Genetic algorithm (GA) is widely used in the electric energy systems. GA can serve to find solution of optimization problem with the reasonable time and resources. GA is defined with parameters and selection criteria. The dispatcher receives the results of the optimization with using GA for the subsequent analysis and using in electric energy system. In recent years the mathematicians achieved the acceleration of algorithm work using interactive methods. The possibility of using interactive methods for the electric energy systems is the task of this work. In this paper, we study complication of GA, compare use of interactive methods and GA, analyze advantages and shortcomings of interactive methods. Results show that we can successfully use the weighed Tchebyshev's metrics and PBI for problems of optimization electric energy systems static operating modes.
电力系统静态运行模式多准则优化的交互方法效率分析
遗传算法在电力系统中得到了广泛的应用。遗传算法可以在合理的时间和资源条件下找到优化问题的解。遗传算法是用参数和选择标准定义的。调度员接收优化结果,利用遗传算法进行后续分析并应用于电力系统。近年来,数学家们利用交互方法实现了算法工作的加速。在电力系统中使用交互方法的可能性是这项工作的任务。本文研究了遗传算法的复杂性,比较了交互方法和遗传算法的使用,分析了交互方法的优缺点。结果表明,我们可以成功地将加权切比雪夫指标和PBI用于优化电力系统静态运行模式的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信