Anticipate your surroundings: Predictive collision detection between dynamic obstacles and planned robot trajectories on the GPU

Andreas Hermann, Felix Mauch, Klaus Fischnaller, Sebastian Klemm, A. Rönnau, R. Dillmann
{"title":"Anticipate your surroundings: Predictive collision detection between dynamic obstacles and planned robot trajectories on the GPU","authors":"Andreas Hermann, Felix Mauch, Klaus Fischnaller, Sebastian Klemm, A. Rönnau, R. Dillmann","doi":"10.1109/ECMR.2015.7324047","DOIUrl":null,"url":null,"abstract":"Proactive collision detection enables robots to efficiently execute tasks in shared human-robot-workspaces by avoiding collision-prone situations. Our work connects motion prediction of RGB-D flow algorithms with motion primitive planning via an efficient voxel Swept-Volume-based collision detection. The approach can handle scenarios with varying contents as we use the same techniques to predict single moving objects but also articulated bodies. Our process chain consists of highly parallel GPU algorithms that allow a full 3D representation of planned trajectories and predictions from live pointclouds in high resolution, while still being online capable. We demonstrated our achievements in two scenarios with different motion granularity.","PeriodicalId":142754,"journal":{"name":"2015 European Conference on Mobile Robots (ECMR)","volume":"194 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 European Conference on Mobile Robots (ECMR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECMR.2015.7324047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Proactive collision detection enables robots to efficiently execute tasks in shared human-robot-workspaces by avoiding collision-prone situations. Our work connects motion prediction of RGB-D flow algorithms with motion primitive planning via an efficient voxel Swept-Volume-based collision detection. The approach can handle scenarios with varying contents as we use the same techniques to predict single moving objects but also articulated bodies. Our process chain consists of highly parallel GPU algorithms that allow a full 3D representation of planned trajectories and predictions from live pointclouds in high resolution, while still being online capable. We demonstrated our achievements in two scenarios with different motion granularity.
预测周围环境:在GPU上预测动态障碍物和计划机器人轨迹之间的碰撞检测
主动碰撞检测使机器人能够有效地在人-机器人共享的工作空间中执行任务,避免容易发生碰撞的情况。我们的工作通过高效的基于体素扫描体的碰撞检测将RGB-D流算法的运动预测与运动原语规划联系起来。该方法可以处理具有不同内容的场景,因为我们使用相同的技术来预测单个移动物体,也可以预测铰接体。我们的流程链由高度并行的GPU算法组成,允许以高分辨率从实时点云进行计划轨迹和预测的完整3D表示,同时仍然具有在线功能。我们在两个不同运动粒度的场景中展示了我们的成就。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信