A scalable custom simulation machine for the Bayesian Confidence Propagation Neural Network model of the brain

Nasim Farahini, A. Hemani, A. Lansner, F. Clermidy, C. Svensson
{"title":"A scalable custom simulation machine for the Bayesian Confidence Propagation Neural Network model of the brain","authors":"Nasim Farahini, A. Hemani, A. Lansner, F. Clermidy, C. Svensson","doi":"10.1109/ASPDAC.2014.6742953","DOIUrl":null,"url":null,"abstract":"A multi-chip custom digital super-computer called eBrain for simulating Bayesian Confidence Propagation Neural Network (BCPNN) model of the human brain has been proposed. It uses Hybrid Memory Cube (HMC), the 3D stacked DRAM memories for storing synaptic weights that are integrated with a custom designed logic chip that implements the BCPNN model. In 22nm node, eBrain executes BCPNN in real time with 740 TFlops/s while accessing 30 TBs synaptic weights with a bandwidth of 112 TBs/s while consuming less than 6 kWs power for the typical case. This efficiency is three orders better than general purpose supercomputers in the same technology node.","PeriodicalId":234635,"journal":{"name":"2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2014.6742953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

A multi-chip custom digital super-computer called eBrain for simulating Bayesian Confidence Propagation Neural Network (BCPNN) model of the human brain has been proposed. It uses Hybrid Memory Cube (HMC), the 3D stacked DRAM memories for storing synaptic weights that are integrated with a custom designed logic chip that implements the BCPNN model. In 22nm node, eBrain executes BCPNN in real time with 740 TFlops/s while accessing 30 TBs synaptic weights with a bandwidth of 112 TBs/s while consuming less than 6 kWs power for the typical case. This efficiency is three orders better than general purpose supercomputers in the same technology node.
一个可扩展的自定义模拟机器的贝叶斯置信传播神经网络模型的大脑
提出了一种用于模拟人脑贝叶斯置信传播神经网络(BCPNN)模型的多芯片定制数字超级计算机eBrain。它使用混合内存立方体(HMC), 3D堆叠DRAM存储器用于存储突触权重,并与实现BCPNN模型的定制设计逻辑芯片集成。在22nm节点上,eBrain以740 TFlops/s的速度实时执行BCPNN,同时以112 TBs/s的带宽访问30 TBs的突触权值,典型情况下功耗低于6 kw。在相同的技术节点上,这种效率比通用超级计算机高出三个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信