Content-Based cropping using visual saliency and blur detection

Yung-Chieh Chou, Chih-Yun Fang, Po-Chyi Su, Yu-Chien Chien
{"title":"Content-Based cropping using visual saliency and blur detection","authors":"Yung-Chieh Chou, Chih-Yun Fang, Po-Chyi Su, Yu-Chien Chien","doi":"10.1109/UMEDIA.2017.8074087","DOIUrl":null,"url":null,"abstract":"This research presents an automatic image/frame cropping scheme to preserve the regions of interest in imagery data. First, a blur detection based on Structural Similarity (SSIM) is proposed to identify whether an image contains a blurred background and the sharp foreground objects can then be extracted. The visual saliency is further calculated to help remove insignificant boundaries. Some pre-defined rules are employed to determine more appropriate cropping limits. If further reduction of resolution is necessary, the resulting image after cropping will be scaled directly to the target size. The experimental results show that the proposed method is computationally efficient and the promising results can be achieved in still images and video frames.","PeriodicalId":440018,"journal":{"name":"2017 10th International Conference on Ubi-media Computing and Workshops (Ubi-Media)","volume":"325 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 10th International Conference on Ubi-media Computing and Workshops (Ubi-Media)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UMEDIA.2017.8074087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This research presents an automatic image/frame cropping scheme to preserve the regions of interest in imagery data. First, a blur detection based on Structural Similarity (SSIM) is proposed to identify whether an image contains a blurred background and the sharp foreground objects can then be extracted. The visual saliency is further calculated to help remove insignificant boundaries. Some pre-defined rules are employed to determine more appropriate cropping limits. If further reduction of resolution is necessary, the resulting image after cropping will be scaled directly to the target size. The experimental results show that the proposed method is computationally efficient and the promising results can be achieved in still images and video frames.
使用视觉显著性和模糊检测的基于内容的裁剪
本研究提出了一种自动图像/帧裁剪方案,以保留图像数据中感兴趣的区域。首先,提出了一种基于结构相似度(SSIM)的模糊检测方法,用于识别图像中是否存在模糊的背景,提取出清晰的前景目标;视觉显著性进一步计算,以帮助消除无关紧要的边界。使用一些预定义的规则来确定更合适的裁剪限制。如果需要进一步降低分辨率,裁剪后的图像将直接缩放到目标尺寸。实验结果表明,该方法具有较高的计算效率,在静止图像和视频帧中均能取得较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信