Sparse Depth Map Interpolation using Deep Convolutional Neural Networks

Ilya Makarov, A. Korinevskaya, Vladimir Aliev
{"title":"Sparse Depth Map Interpolation using Deep Convolutional Neural Networks","authors":"Ilya Makarov, A. Korinevskaya, Vladimir Aliev","doi":"10.1109/TSP.2018.8441443","DOIUrl":null,"url":null,"abstract":"The problem of dense depth map inference from sparse depth values is considered in this paper. We address this issue in situation when one has low-cost sensor data and limited computational resources. We propose a method that performs interpolation and then super-resolution while comparing our approach with the state-of-the-art direct RGB-to-Dense reconstruction solutions. In particular, we use an encoder-decoder model of CNN with loss consisting of standard mean squared error and perceptual loss function. Futhermore, it has been shown that the described approach could be adopted to estimate rough depth map in real-time.","PeriodicalId":383018,"journal":{"name":"2018 41st International Conference on Telecommunications and Signal Processing (TSP)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 41st International Conference on Telecommunications and Signal Processing (TSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSP.2018.8441443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The problem of dense depth map inference from sparse depth values is considered in this paper. We address this issue in situation when one has low-cost sensor data and limited computational resources. We propose a method that performs interpolation and then super-resolution while comparing our approach with the state-of-the-art direct RGB-to-Dense reconstruction solutions. In particular, we use an encoder-decoder model of CNN with loss consisting of standard mean squared error and perceptual loss function. Futhermore, it has been shown that the described approach could be adopted to estimate rough depth map in real-time.
使用深度卷积神经网络的稀疏深度图插值
本文研究了从稀疏深度值推断密集深度图的问题。我们在低成本传感器数据和有限计算资源的情况下解决了这个问题。我们提出了一种执行插值然后超分辨率的方法,同时将我们的方法与最先进的直接rgb到dense重建解决方案进行比较。特别是,我们使用CNN的编码器-解码器模型,其损失由标准均方误差和感知损失函数组成。实验结果表明,该方法可用于深度图的实时粗略估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信