Nanomaterials in Structural Engineering

Małgorzata Krystek, M. Górski
{"title":"Nanomaterials in Structural Engineering","authors":"Małgorzata Krystek, M. Górski","doi":"10.5772/INTECHOPEN.79995","DOIUrl":null,"url":null,"abstract":"Development of structural engineering, daring structures with record spans or heights, meets two serious obstacles—the limitations of traditionally used materials and the need of continuous monitoring of new structures subjected to complex loads, including those of dynamic nature. Considering the responsibility for the life of people and the budget of new structures, the need of constant monitoring is inevitable. This is why structural engineers seek for new solutions; among them, smart structures based on self-monitoring materials seem to be one of the most attractive proposals. It is still an unexplored area, but current research shows a high potential of the use of composites reinforced by carbon-based nanomaterials as self-sensing structural materials. Nanomaterials also influence other important features of structural materials, such as microstructure, mechanical, and transport-related properties. In this chapter, we present the state of art of the use of nanomaterials in structural engineering in various areas including mechanical and electrical properties as well as issues referring to durability.","PeriodicalId":246449,"journal":{"name":"New Uses of Micro and Nanomaterials","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Uses of Micro and Nanomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.79995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Development of structural engineering, daring structures with record spans or heights, meets two serious obstacles—the limitations of traditionally used materials and the need of continuous monitoring of new structures subjected to complex loads, including those of dynamic nature. Considering the responsibility for the life of people and the budget of new structures, the need of constant monitoring is inevitable. This is why structural engineers seek for new solutions; among them, smart structures based on self-monitoring materials seem to be one of the most attractive proposals. It is still an unexplored area, but current research shows a high potential of the use of composites reinforced by carbon-based nanomaterials as self-sensing structural materials. Nanomaterials also influence other important features of structural materials, such as microstructure, mechanical, and transport-related properties. In this chapter, we present the state of art of the use of nanomaterials in structural engineering in various areas including mechanical and electrical properties as well as issues referring to durability.
结构工程中的纳米材料
结构工程的发展遇到了两个严重的障碍——传统材料的限制和对受复杂载荷(包括动力载荷)影响的新结构的持续监测的需要。考虑到对人民生活的责任和新结构的预算,需要不断监测是不可避免的。这就是结构工程师寻求新解决方案的原因;其中,基于自我监测材料的智能结构似乎是最具吸引力的建议之一。这仍然是一个未开发的领域,但目前的研究表明,碳基纳米材料增强复合材料作为自传感结构材料具有很高的潜力。纳米材料还影响结构材料的其他重要特征,如微观结构、力学和传输相关性能。在本章中,我们介绍了纳米材料在结构工程各个领域的应用现状,包括机械和电气性能以及耐久性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信