Time series prediction with signal-to-noise ratio maps and high performance computing

Laurentiu Bucur, Serban Petrescu
{"title":"Time series prediction with signal-to-noise ratio maps and high performance computing","authors":"Laurentiu Bucur, Serban Petrescu","doi":"10.1109/SACI.2011.5873020","DOIUrl":null,"url":null,"abstract":"Time series prediction methods applied to chaotic signals affected by noise use a continuous pattern function as the least-squares estimate of an unknown deterministic map. The noise variance around the continuous pattern function is not always constant but may exhibit spatial variability, which directly affects prediction performance. In this paper we propose a novel approach for increasing predictor performance using a multi-resolution signal-to-noise ratio (SNR) map of phase space. We calculate it using a parralel algorithm on a high performance computing cluster and in the final stage of the approach we use a novel feature selection algorithm to build a kernel machine. We show the selected features form sparse kernel machines which outperform existing methods for the prediction of noisy financial data.","PeriodicalId":334381,"journal":{"name":"2011 6th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI.2011.5873020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Time series prediction methods applied to chaotic signals affected by noise use a continuous pattern function as the least-squares estimate of an unknown deterministic map. The noise variance around the continuous pattern function is not always constant but may exhibit spatial variability, which directly affects prediction performance. In this paper we propose a novel approach for increasing predictor performance using a multi-resolution signal-to-noise ratio (SNR) map of phase space. We calculate it using a parralel algorithm on a high performance computing cluster and in the final stage of the approach we use a novel feature selection algorithm to build a kernel machine. We show the selected features form sparse kernel machines which outperform existing methods for the prediction of noisy financial data.
时间序列预测与信噪比图和高性能计算
应用于受噪声影响的混沌信号的时间序列预测方法采用连续模式函数作为未知确定性映射的最小二乘估计。连续模式函数周围的噪声方差并不总是恒定的,而可能表现出空间变异性,直接影响预测效果。本文提出了一种利用相空间的多分辨率信噪比(SNR)图来提高预测器性能的新方法。我们在高性能计算集群上使用并行算法进行计算,在方法的最后阶段,我们使用一种新颖的特征选择算法来构建内核机。我们展示了从稀疏核机中选择的特征,它优于现有的方法来预测有噪声的金融数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信