Transient ST-segment episode detection for ECG beat classification

S. C. Bulusu, M. Faezipour, Vincent Ng, M. Nourani, L. Tamil, S. Banerjee
{"title":"Transient ST-segment episode detection for ECG beat classification","authors":"S. C. Bulusu, M. Faezipour, Vincent Ng, M. Nourani, L. Tamil, S. Banerjee","doi":"10.1109/LISSA.2011.5754171","DOIUrl":null,"url":null,"abstract":"Sudden Cardiac Death (SCD) is an unexpected death caused by loss of heart function when the electrical impulses fired from the ventricles become irregular. Most common SCDs are caused by cardiac arrhythmias and coronary heart disease. They are mainly due to Acute Myocardial Infarction (AMI), myocardial ischaemia and cardiac arrhythmia. This paper aims at automating the recognition of ST-segment deviations and transient ST episodes which helps in the diagnosis of myocardial ischaemia and also classifying major cardiac arrhythmia. Our approach is based on the application of signal processing and artificial intelligence to the heart signal known as the ECG (Electrocardiogram). We propose an improved morphological feature vector including ST-segment information for heart beat classification by supervised learning using the support vector machine approach. Our system has been tested and yielded an accuracy of 93.33% for the ST episode detection on the European ST-T Database and 96.35% on MIT-BIH Arrhythmia Database for classifying six major groups, i.e. Normal, Ventricular, Atrial, Fusion, Right Bundle and Left Bundle Branch Block beats.","PeriodicalId":227469,"journal":{"name":"2011 IEEE/NIH Life Science Systems and Applications Workshop (LiSSA)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/NIH Life Science Systems and Applications Workshop (LiSSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LISSA.2011.5754171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

Sudden Cardiac Death (SCD) is an unexpected death caused by loss of heart function when the electrical impulses fired from the ventricles become irregular. Most common SCDs are caused by cardiac arrhythmias and coronary heart disease. They are mainly due to Acute Myocardial Infarction (AMI), myocardial ischaemia and cardiac arrhythmia. This paper aims at automating the recognition of ST-segment deviations and transient ST episodes which helps in the diagnosis of myocardial ischaemia and also classifying major cardiac arrhythmia. Our approach is based on the application of signal processing and artificial intelligence to the heart signal known as the ECG (Electrocardiogram). We propose an improved morphological feature vector including ST-segment information for heart beat classification by supervised learning using the support vector machine approach. Our system has been tested and yielded an accuracy of 93.33% for the ST episode detection on the European ST-T Database and 96.35% on MIT-BIH Arrhythmia Database for classifying six major groups, i.e. Normal, Ventricular, Atrial, Fusion, Right Bundle and Left Bundle Branch Block beats.
瞬态st段发作检测用于心电心跳分类
心源性猝死(SCD)是由于心室发出的电脉冲变得不规则而导致心脏功能丧失而导致的意外死亡。最常见的scd是由心律失常和冠心病引起的。它们主要由急性心肌梗死(AMI)、心肌缺血和心律失常引起。本文旨在实现ST段偏离和短暂性ST段发作的自动识别,有助于心肌缺血的诊断和主要心律失常的分类。我们的方法是基于信号处理和人工智能对心脏信号的应用,即ECG(心电图)。我们提出了一种改进的形态学特征向量,包括st段信息,通过支持向量机方法的监督学习进行心跳分类。我们的系统已经过测试,在欧洲ST- t数据库上的ST集检测准确率为93.33%,在MIT-BIH心律失常数据库上的ST集检测准确率为96.35%,用于分类六大类,即正常、室、房、融合、右束和左束支传导阻滞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信