Application of the K-Means Clustering Algorithm in Mapping the Regional Voter Strategy for the Legislative Candidates for the DPR RI

Dhika Alfatah
{"title":"Application of the K-Means Clustering Algorithm in Mapping the Regional Voter Strategy for the Legislative Candidates for the DPR RI","authors":"Dhika Alfatah","doi":"10.53697/jkomitek.v1i2.430","DOIUrl":null,"url":null,"abstract":"This study applies Data Mining by using the Clustering method to map the electoral strategy for the Legislative Candidates in Bengkulu City. The algorithm used is K-Means Clustering, where data grouped based on the same characteristics will be included in the same group and data sets are entered into the same group. in non-overlapping groups. The information displayed is in the form of product data groups based on the voter vote level in each village, so that it is known which regions/villages have high, medium or low voter levels. The test was carried out with the RapidMiner 5.3 application, resulting in clusters with high, medium or low voter rates..","PeriodicalId":371693,"journal":{"name":"Jurnal Komputer, Informasi dan Teknologi (JKOMITEK)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Komputer, Informasi dan Teknologi (JKOMITEK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53697/jkomitek.v1i2.430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study applies Data Mining by using the Clustering method to map the electoral strategy for the Legislative Candidates in Bengkulu City. The algorithm used is K-Means Clustering, where data grouped based on the same characteristics will be included in the same group and data sets are entered into the same group. in non-overlapping groups. The information displayed is in the form of product data groups based on the voter vote level in each village, so that it is known which regions/villages have high, medium or low voter levels. The test was carried out with the RapidMiner 5.3 application, resulting in clusters with high, medium or low voter rates..
k -均值聚类算法在人大立法候选人区域选民策略映射中的应用
本研究运用数据挖掘的聚类方法,对明古鲁市立法候选人的选举策略进行绘图。使用的算法是K-Means聚类,基于相同特征分组的数据将被包含在同一组中,数据集被输入到同一组中。在不重叠的组中。显示的信息是根据每个村庄的选民投票水平以产品数据组的形式显示的,这样就可以知道哪些地区/村庄的选民投票水平高、中、低。该测试是使用RapidMiner 5.3应用程序进行的,产生了具有高、中或低投票率的集群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信