Clustering of large data based on the relational analysis

S. Slaoui, Yasmine Lamari
{"title":"Clustering of large data based on the relational analysis","authors":"S. Slaoui, Yasmine Lamari","doi":"10.1109/ISACV.2015.7105550","DOIUrl":null,"url":null,"abstract":"This paper presents a fast heuristic which finds clusters by partitioning categorical large data sets according to the Relational Analysis, whereby the cluster analysis is modeled as a linear integer program with n2 attributes (n is the number of observations) and solved by the optimization under constraints of the Condorcet criterion. Without neither a sampling method nor the fixing of input parameters and while using a natural cluster structure, Transitive heuristic needs a small amount of memory and a short time to provide good quality partition. Experimental results on real and synthetic data sets are presented in order to show that clusters, formed using this technique, are intensive and accurate.","PeriodicalId":426557,"journal":{"name":"2015 Intelligent Systems and Computer Vision (ISCV)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Intelligent Systems and Computer Vision (ISCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISACV.2015.7105550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents a fast heuristic which finds clusters by partitioning categorical large data sets according to the Relational Analysis, whereby the cluster analysis is modeled as a linear integer program with n2 attributes (n is the number of observations) and solved by the optimization under constraints of the Condorcet criterion. Without neither a sampling method nor the fixing of input parameters and while using a natural cluster structure, Transitive heuristic needs a small amount of memory and a short time to provide good quality partition. Experimental results on real and synthetic data sets are presented in order to show that clusters, formed using this technique, are intensive and accurate.
基于关联分析的大数据聚类
本文提出了一种基于关联分析对分类大数据集进行划分的快速启发式聚类算法,将聚类分析建模为具有n2个属性(n为观测值个数)的线性整数规划,并在Condorcet准则约束下进行优化求解。传递启发式算法既没有采样方法,也没有固定输入参数,并且使用自然的聚类结构,因此需要较少的内存和较短的时间来提供高质量的分区。在真实数据集和合成数据集上的实验结果表明,使用该技术形成的聚类是密集和准确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信