{"title":"Mathematic Simulation on Power Generation by Roll Cake Type of Thermoelectric Cylinders","authors":"R. Suzuki, D. Tanaka","doi":"10.1109/ICT.2006.331375","DOIUrl":null,"url":null,"abstract":"Analytical expression of electric power is deduced in case of the large-scale thermoelectric device that consists of the cylindrical tubes like roll cake. The mildly curved thermoelectric panels are exposed to the two thermal fluids. These fluids are circulated several times for better utilization of thermal energy. The output powers of 18 model systems are mathematically described by the simultaneous derivative equations based on heat exchange. The temperature profiles in the device depend on the flow directions of hot and cold fluids, but the flow directions do not change the output power. Resultantly 10 sets of solutions for the output power are deduced. The maximum output power is the largest in the VIC system (counter flow using a cylindrical panel). However, that in the two systems (V2CC-I and -II system), where two fluids flow twice in counter directions and one of the fluids goes into the system from the inside of the inner cylinder, can generate the thermoelectric power equivalent with that from the VIC system. V2CC-I and -II systems use only 23.2% volume required for that of VIC system","PeriodicalId":346555,"journal":{"name":"2006 25th International Conference on Thermoelectrics","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 25th International Conference on Thermoelectrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.2006.331375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Analytical expression of electric power is deduced in case of the large-scale thermoelectric device that consists of the cylindrical tubes like roll cake. The mildly curved thermoelectric panels are exposed to the two thermal fluids. These fluids are circulated several times for better utilization of thermal energy. The output powers of 18 model systems are mathematically described by the simultaneous derivative equations based on heat exchange. The temperature profiles in the device depend on the flow directions of hot and cold fluids, but the flow directions do not change the output power. Resultantly 10 sets of solutions for the output power are deduced. The maximum output power is the largest in the VIC system (counter flow using a cylindrical panel). However, that in the two systems (V2CC-I and -II system), where two fluids flow twice in counter directions and one of the fluids goes into the system from the inside of the inner cylinder, can generate the thermoelectric power equivalent with that from the VIC system. V2CC-I and -II systems use only 23.2% volume required for that of VIC system