{"title":"Can piezoelectricity lead to negative capacitance?","authors":"Justin C. Wong, S. Salahuddin","doi":"10.1109/IEDM.2014.7047046","DOIUrl":null,"url":null,"abstract":"A thermodynamic model was constructed to quantitatively analyze the negative capacitance effect in the presence of piezoelectricity, electrostriction, and ferroelectricity. The model shows that pure piezoelectricity and higher-order electromechanical coupling can provide a negative capacitance effect in principle, but are not strong enough in practice. Negative capacitance is predicted to occur due to ferroelectric polarization switching and not due to piezoelectricity.","PeriodicalId":309325,"journal":{"name":"2014 IEEE International Electron Devices Meeting","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Electron Devices Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2014.7047046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
A thermodynamic model was constructed to quantitatively analyze the negative capacitance effect in the presence of piezoelectricity, electrostriction, and ferroelectricity. The model shows that pure piezoelectricity and higher-order electromechanical coupling can provide a negative capacitance effect in principle, but are not strong enough in practice. Negative capacitance is predicted to occur due to ferroelectric polarization switching and not due to piezoelectricity.