Dopant deactivation: A new challenge in sub-20nm scaled FinFETs

P. Debashis, S. Mittal, S. Lodha, U. Ganguly
{"title":"Dopant deactivation: A new challenge in sub-20nm scaled FinFETs","authors":"P. Debashis, S. Mittal, S. Lodha, U. Ganguly","doi":"10.1109/VLSI-TSA.2014.6839650","DOIUrl":null,"url":null,"abstract":"Recently, dopant deactivation (DD) based resistance increase in Si nanowires surrounded by low-k insulator has been experimentally demonstrated. Source/drain extension confined by low-k spacer in scaled fins for sub-20 nm FinFET are susceptible to such series resistance increase due to DD. In this paper, we implement DD into experimentally calibrated TCAD simulations of FinFETs and analyze the impact of DD on device performance with scaling for the first time. We show that the performance advantage with scaling is highly degraded in sub-20 nm gate length node (e.g. at 8 nm node the on-current degrades by more than 50% by adding DD correction). We further propose an optimal high-k spacer due to a DD mitigation vs. gate capacitance reduction trade-off (contrary to the present trend of spacer k-minimization based on only capacitance reduction considerations). We demonstrate that optimal higher-k spacer dielectric improves performance for technology nodes from 22 nm to 8 nm, e.g. optimized spacer can lead to 116% increase in ON current and 30% reduction in intrinsic delay for 8 nm FinFET compared to low-k spacers. In fact, optimized high-k spacer can restore FinFET performance to DD-uncorrected prediction levels at 8 nm node.","PeriodicalId":403085,"journal":{"name":"Proceedings of Technical Program - 2014 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA)","volume":"48 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Technical Program - 2014 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSI-TSA.2014.6839650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, dopant deactivation (DD) based resistance increase in Si nanowires surrounded by low-k insulator has been experimentally demonstrated. Source/drain extension confined by low-k spacer in scaled fins for sub-20 nm FinFET are susceptible to such series resistance increase due to DD. In this paper, we implement DD into experimentally calibrated TCAD simulations of FinFETs and analyze the impact of DD on device performance with scaling for the first time. We show that the performance advantage with scaling is highly degraded in sub-20 nm gate length node (e.g. at 8 nm node the on-current degrades by more than 50% by adding DD correction). We further propose an optimal high-k spacer due to a DD mitigation vs. gate capacitance reduction trade-off (contrary to the present trend of spacer k-minimization based on only capacitance reduction considerations). We demonstrate that optimal higher-k spacer dielectric improves performance for technology nodes from 22 nm to 8 nm, e.g. optimized spacer can lead to 116% increase in ON current and 30% reduction in intrinsic delay for 8 nm FinFET compared to low-k spacers. In fact, optimized high-k spacer can restore FinFET performance to DD-uncorrected prediction levels at 8 nm node.
掺杂失活:亚20nm尺度finfet的新挑战
近年来,在低k绝缘子包围的硅纳米线中,掺杂剂失活(DD)导致电阻增加的现象得到了实验证明。在20 nm以下的FinFET中,受低k间隔限制的源极/漏极扩展容易受到DD导致的串联电阻增加的影响。在本文中,我们将DD实现到FinFET的实验校准TCAD模拟中,并首次分析了DD对缩放器件性能的影响。我们发现,在低于20 nm的栅极长度节点中,缩放的性能优势被高度降低(例如,在8 nm节点上,通过添加DD校正,导通电流降低了50%以上)。我们进一步提出了一种最佳的高k间隔器,由于DD缓解与栅极电容降低之间的权衡(与目前仅基于电容降低考虑的间隔器k最小化趋势相反)。我们证明了最佳的高k间隔介质可以提高22 nm到8 nm技术节点的性能,例如,与低k间隔介质相比,优化的间隔介质可以使8nm FinFET的导通电流增加116%,固有延迟减少30%。事实上,优化后的高k间隔可以在8nm节点将FinFET性能恢复到未经dd校正的预测水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信