A new objective function for fuzzy c-regression model and its application to T-S fuzzy model identification

M. Soltani, A. Chaari, F. Benhmida, M. Gossa
{"title":"A new objective function for fuzzy c-regression model and its application to T-S fuzzy model identification","authors":"M. Soltani, A. Chaari, F. Benhmida, M. Gossa","doi":"10.1109/CCCA.2011.6031427","DOIUrl":null,"url":null,"abstract":"This paper proposes a new objective function for fuzzy c-regression model (FCRM) clustering algorithm. The main motivation for this work is to develop an identification procedure for nonlinear systems affected by measurement noise. The proposed methodology is based to adding a second regularization term in the objective function of FCRM clustering algorithm in order to take in account the data are noisy. the orthogonal least square is used to identify the consequent parameters. A comparative study is presented. Validation results involving simulation of the identification of nonlinear benchmark problems have demonstrated the effectiveness and practicality of the proposed algorithm.","PeriodicalId":259067,"journal":{"name":"2011 International Conference on Communications, Computing and Control Applications (CCCA)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Communications, Computing and Control Applications (CCCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCCA.2011.6031427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper proposes a new objective function for fuzzy c-regression model (FCRM) clustering algorithm. The main motivation for this work is to develop an identification procedure for nonlinear systems affected by measurement noise. The proposed methodology is based to adding a second regularization term in the objective function of FCRM clustering algorithm in order to take in account the data are noisy. the orthogonal least square is used to identify the consequent parameters. A comparative study is presented. Validation results involving simulation of the identification of nonlinear benchmark problems have demonstrated the effectiveness and practicality of the proposed algorithm.
一种新的模糊c-回归模型目标函数及其在T-S模糊模型辨识中的应用
本文提出了一种新的模糊c-回归模型聚类算法的目标函数。这项工作的主要动机是为受测量噪声影响的非线性系统开发一种识别程序。该方法是在FCRM聚类算法的目标函数中加入第二个正则化项,以考虑到数据的噪声。采用正交最小二乘法辨识后续参数。并进行了比较研究。非线性基准问题的仿真验证结果表明了该算法的有效性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信