Procena mesta nastanka kvara na električnom vodu primenom veštačkih neuralnih mreža

Milorad Zakić, G. Kvascev
{"title":"Procena mesta nastanka kvara na električnom vodu primenom veštačkih neuralnih mreža","authors":"Milorad Zakić, G. Kvascev","doi":"10.46793/eee22-4.68z","DOIUrl":null,"url":null,"abstract":"This paper deals with the application of neural networks to fault location on extra-high voltage (EHV) transmission lines. A relatively simple power system, consisting of two 220 kV power grids connected with one transmission line, has been modelled using MATLAB/Simulink software. Simulating different fault scenarios (fault types, locations, resistances, and inception angles), the proposed neural network fault locator was trained using various sets of terminal line data (line-to-line voltages and phase currents). Feedforward networks have been employed along with the backpropagation algorithm. An analysis of the neural networks with a varying number of hidden layers and neurons per hidden layer has been performed in order to validate the choice of the neural networks in each step. All analyses were carried out using Neural Network Toolbox.","PeriodicalId":236996,"journal":{"name":"Energija, ekonomija, ekologija","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energija, ekonomija, ekologija","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46793/eee22-4.68z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with the application of neural networks to fault location on extra-high voltage (EHV) transmission lines. A relatively simple power system, consisting of two 220 kV power grids connected with one transmission line, has been modelled using MATLAB/Simulink software. Simulating different fault scenarios (fault types, locations, resistances, and inception angles), the proposed neural network fault locator was trained using various sets of terminal line data (line-to-line voltages and phase currents). Feedforward networks have been employed along with the backpropagation algorithm. An analysis of the neural networks with a varying number of hidden layers and neurons per hidden layer has been performed in order to validate the choice of the neural networks in each step. All analyses were carried out using Neural Network Toolbox.
研究了神经网络在超高压输电线路故障定位中的应用。利用MATLAB/Simulink软件对一个相对简单的电力系统进行了建模,该系统由两个220千伏电网与一条传输线相连组成。模拟不同的故障场景(故障类型、位置、电阻和起始角度),使用不同的终端线路数据集(线对线电压和相电流)训练所提出的神经网络故障定位器。前馈网络与反向传播算法一起被采用。为了验证每个步骤中神经网络的选择,对具有不同数量隐藏层和每个隐藏层神经元的神经网络进行了分析。所有分析均使用神经网络工具箱进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信