Filtering Scheme for Context-Aware Fog Computing in Cyber-Physical Systems

Teemu Mononen, M. M. Aref, J. Mattila
{"title":"Filtering Scheme for Context-Aware Fog Computing in Cyber-Physical Systems","authors":"Teemu Mononen, M. M. Aref, J. Mattila","doi":"10.1109/MESA.2018.8449153","DOIUrl":null,"url":null,"abstract":"In the cloud-based Internet of Things, the amount of available network bandwidth can become a bottleneck, especially in real-time sensor network applications. This study presents an architecture and an algorithm for context-aware fog data filtering that can map data features and their appearance frequency. This reduces the amount of data sent using long-range communications. In this study, a Fast Fourier Transform (FFT)-based algorithm is presented, and a feature mapping technique is used. The filtering algorithm considers both historic data and adjacent sensor data to determine whether unexpected sensor outputs are caused by events in the system or faulty sensor readings. The type of data transmitted to supervisors is determined by the needs of the receivers. In this way, both events and raw data can be accessed from the proposed filters.","PeriodicalId":138936,"journal":{"name":"2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MESA.2018.8449153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In the cloud-based Internet of Things, the amount of available network bandwidth can become a bottleneck, especially in real-time sensor network applications. This study presents an architecture and an algorithm for context-aware fog data filtering that can map data features and their appearance frequency. This reduces the amount of data sent using long-range communications. In this study, a Fast Fourier Transform (FFT)-based algorithm is presented, and a feature mapping technique is used. The filtering algorithm considers both historic data and adjacent sensor data to determine whether unexpected sensor outputs are caused by events in the system or faulty sensor readings. The type of data transmitted to supervisors is determined by the needs of the receivers. In this way, both events and raw data can be accessed from the proposed filters.
信息物理系统中上下文感知雾计算的过滤方案
在基于云的物联网中,可用网络带宽的数量可能成为瓶颈,特别是在实时传感器网络应用中。本研究提出了一种用于上下文感知雾数据过滤的架构和算法,该架构和算法可以映射数据特征及其出现频率。这减少了使用远程通信发送的数据量。本研究提出了一种基于快速傅立叶变换(FFT)的算法,并使用了特征映射技术。滤波算法考虑历史数据和相邻传感器数据,以确定传感器的意外输出是由系统中的事件还是传感器读数错误引起的。传输给主管的数据类型取决于接收方的需要。通过这种方式,可以从建议的过滤器访问事件和原始数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信