Application of Deep Artificial Neural Network to Model Characteristic Fluctuation of Multi-Channel Gate-All-Around Silicon Nanosheet and Nanofin MOSFETs Induced by Random Nanosized Metal Grains

S. Dash, Yiming Li, W. Sung
{"title":"Application of Deep Artificial Neural Network to Model Characteristic Fluctuation of Multi-Channel Gate-All-Around Silicon Nanosheet and Nanofin MOSFETs Induced by Random Nanosized Metal Grains","authors":"S. Dash, Yiming Li, W. Sung","doi":"10.1109/EDTM55494.2023.10103042","DOIUrl":null,"url":null,"abstract":"In this work, we propose a deep artificial neural network (D-ANN) to estimate the work function fluctuation (WKF) on 4-channel stacked gate-all-around (GAA) silicon (Si) nanosheet (NS) and nanofin (NF) MOSFET devices for the first time. The 2-layered simple deep model can well predict the transfer characteristics for both NS/NF FET with a large number of (128) input features, utilizing considerably lesser (1100 samples) data uniformly. The resultant model is evaluated by the $\\mathrm{R}^{2}$ score and RMSE to witness its competency and the average error is $< 4\\%$. We do also discuss the circuit simulation possibility by applying the ANN approach.","PeriodicalId":418413,"journal":{"name":"2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDTM55494.2023.10103042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we propose a deep artificial neural network (D-ANN) to estimate the work function fluctuation (WKF) on 4-channel stacked gate-all-around (GAA) silicon (Si) nanosheet (NS) and nanofin (NF) MOSFET devices for the first time. The 2-layered simple deep model can well predict the transfer characteristics for both NS/NF FET with a large number of (128) input features, utilizing considerably lesser (1100 samples) data uniformly. The resultant model is evaluated by the $\mathrm{R}^{2}$ score and RMSE to witness its competency and the average error is $< 4\%$. We do also discuss the circuit simulation possibility by applying the ANN approach.
应用深度人工神经网络模拟随机纳米金属颗粒诱导的多通道栅极全能硅纳米片和纳米fin mosfet的特性波动
在这项工作中,我们首次提出了一种深度人工神经网络(D-ANN)来估计4通道堆叠栅极全能(GAA)硅(Si)纳米片(NS)和纳米fin (NF) MOSFET器件的功函数波动(WKF)。两层简单深度模型可以很好地预测具有大量(128)输入特征的NS/NF场效应管的传输特性,均匀地使用相当少的(1100个样本)数据。通过$\mathrm{R}^{2}$分数和RMSE对所得模型进行评估,以证明其胜任性,平均误差为$< 4% $。我们还讨论了应用人工神经网络方法进行电路仿真的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信