{"title":"Dopant-free CMOS: A new device concept","authors":"Frank Wessely, Tillmann A. Krauss, U. Schwalke","doi":"10.1109/DTIS.2012.6232949","DOIUrl":null,"url":null,"abstract":"In this paper we report on a newly developed multigate nanowire (NW) based field-effect device (NWFET) where the transistor type is freely selectable by the application of a control-voltage, adding to design flexibility in integrated circuit fabrication. Moreover, the midgap Schottky-barrier source and drain contacts of the NWFET make it feasible for the usa in high temperature environments, since the devices posses both stability against high temperatures and low OFF-state current at the same time. This makes the presented NWFET a multi-purpose device for many specific circuit applications.","PeriodicalId":114829,"journal":{"name":"7th International Conference on Design & Technology of Integrated Systems in Nanoscale Era","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Conference on Design & Technology of Integrated Systems in Nanoscale Era","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DTIS.2012.6232949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this paper we report on a newly developed multigate nanowire (NW) based field-effect device (NWFET) where the transistor type is freely selectable by the application of a control-voltage, adding to design flexibility in integrated circuit fabrication. Moreover, the midgap Schottky-barrier source and drain contacts of the NWFET make it feasible for the usa in high temperature environments, since the devices posses both stability against high temperatures and low OFF-state current at the same time. This makes the presented NWFET a multi-purpose device for many specific circuit applications.