A comparative analysis of discretization algorithms for data mining

Xie Ming, Xinping Xiao
{"title":"A comparative analysis of discretization algorithms for data mining","authors":"Xie Ming, Xinping Xiao","doi":"10.1109/GSIS.2009.5408138","DOIUrl":null,"url":null,"abstract":"In this paper, four kinds of typical discretization algorithms were comparatively analyzed from two aspects using examples: one referred to the variable quality of classification and accuracy of approximation under different parameter, the other was the similarity degrees between reducted variable sets and the original variable set. On determination of reducted variable sets, the reduction was regarded as multi-objective optimization problem, which was solved by the genetic algorithm, and the optimal reducted variable sets were found through including degrees. Finally, the consistent conclusion on preference of discretization algorithms was gained.","PeriodicalId":294363,"journal":{"name":"2009 IEEE International Conference on Grey Systems and Intelligent Services (GSIS 2009)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Grey Systems and Intelligent Services (GSIS 2009)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GSIS.2009.5408138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, four kinds of typical discretization algorithms were comparatively analyzed from two aspects using examples: one referred to the variable quality of classification and accuracy of approximation under different parameter, the other was the similarity degrees between reducted variable sets and the original variable set. On determination of reducted variable sets, the reduction was regarded as multi-objective optimization problem, which was solved by the genetic algorithm, and the optimal reducted variable sets were found through including degrees. Finally, the consistent conclusion on preference of discretization algorithms was gained.
数据挖掘离散化算法的比较分析
本文通过实例,从两个方面比较分析了四种典型的离散化算法:一是指不同参数下的分类质量和逼近精度,二是指约简变量集与原始变量集的相似度。在约简变量集的确定上,将约简视为多目标优化问题,采用遗传算法求解,通过包含度找到最优的约简变量集。最后,得到了离散化算法的优选性的一致结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信