Application of Image Data Analytics for Immediate Disaster Response

Neha Chaudhuri, I. Bose
{"title":"Application of Image Data Analytics for Immediate Disaster Response","authors":"Neha Chaudhuri, I. Bose","doi":"10.1145/3369740.3372729","DOIUrl":null,"url":null,"abstract":"This study identifies a novel source of data, i.e. images from smart urban infrastructures, that would be helpful in effective disaster management decision-making. For this purpose, we collected images from disaster-hit environments of Central Mexico (2017 earthquake). Also, this study utilizes deep learning convolutional neural network to analyze this novel dataset and evaluates the model effectiveness and technical viability during crisis scenarios. TensorFlow was utilized for the image classification task. The findings have important significance for effective disaster response.","PeriodicalId":240048,"journal":{"name":"Proceedings of the 21st International Conference on Distributed Computing and Networking","volume":"96 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st International Conference on Distributed Computing and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3369740.3372729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This study identifies a novel source of data, i.e. images from smart urban infrastructures, that would be helpful in effective disaster management decision-making. For this purpose, we collected images from disaster-hit environments of Central Mexico (2017 earthquake). Also, this study utilizes deep learning convolutional neural network to analyze this novel dataset and evaluates the model effectiveness and technical viability during crisis scenarios. TensorFlow was utilized for the image classification task. The findings have important significance for effective disaster response.
图像数据分析在即时灾难响应中的应用
本研究确定了一种新的数据来源,即来自智能城市基础设施的图像,这将有助于有效的灾害管理决策。为此,我们收集了墨西哥中部受灾环境(2017年地震)的图像。此外,本研究利用深度学习卷积神经网络对该新数据集进行分析,并评估危机情景下模型的有效性和技术可行性。使用TensorFlow进行图像分类任务。研究结果对有效应对灾害具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信