{"title":"Self-aligned enhancement-mode AlGaN/GaN HEMTs using 25 keV fluorine ion implantation","authors":"Hongwei Chen, Maojun Wang, K. J. Chen","doi":"10.1109/DRC.2010.5551879","DOIUrl":null,"url":null,"abstract":"Owing to superior physical properties such as high electron saturation velocity and high electric breakdown field, GaN-based high electron mobility transistors (HEMTs) are capable of delivering superior performance in microwave amplifiers, high power switches, and high temperature integrated circuits (ICs). Compared to the conventional D-mode HEMTs with negative threshold voltages, enhancement-mode (E-mode) or normally-off HEMTs are desirable in these applications, for reduced circuit design complexity and fail-safe operation. Fluorine plasma treatment has been used to fabricate E-mode HEMTs [1], and is a robust process for the channel threshold voltage modulation. However, there is no standard equipment for this process and various groups have reported a wide range of process parameters [1–4]. In this work, we demonstrate the self-aligned enhancement-mode AlGaN/GaN HEMTs fabricated with a standard fluorine ion implantation. Ion implantation is widely used in semiconductor industry with well-controlled dose and precise implantation profile.","PeriodicalId":396875,"journal":{"name":"68th Device Research Conference","volume":"601 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"68th Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2010.5551879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
Owing to superior physical properties such as high electron saturation velocity and high electric breakdown field, GaN-based high electron mobility transistors (HEMTs) are capable of delivering superior performance in microwave amplifiers, high power switches, and high temperature integrated circuits (ICs). Compared to the conventional D-mode HEMTs with negative threshold voltages, enhancement-mode (E-mode) or normally-off HEMTs are desirable in these applications, for reduced circuit design complexity and fail-safe operation. Fluorine plasma treatment has been used to fabricate E-mode HEMTs [1], and is a robust process for the channel threshold voltage modulation. However, there is no standard equipment for this process and various groups have reported a wide range of process parameters [1–4]. In this work, we demonstrate the self-aligned enhancement-mode AlGaN/GaN HEMTs fabricated with a standard fluorine ion implantation. Ion implantation is widely used in semiconductor industry with well-controlled dose and precise implantation profile.