Constructive Multi-User Interference for Symbol-Level Link Adaptation: MMSE Approach

Yong I. Choi, J. W. Lee, C. Kang, M. Rim
{"title":"Constructive Multi-User Interference for Symbol-Level Link Adaptation: MMSE Approach","authors":"Yong I. Choi, J. W. Lee, C. Kang, M. Rim","doi":"10.1109/GLOCOMW.2017.8269178","DOIUrl":null,"url":null,"abstract":"Unlike the general concept of eliminating or avoiding inter-user interference in the multi-user downlink multiple-input single-output (MISO) system, the data-aided precoding scheme attempts to exploit the constructive interference at symbol level among the multiple users. A positive interference can be constructed to enhance the received signal gain by predicting the phase and magnitude of inter-user interference. Thus, we propose constructive interference optimization that maximizes the signal-to-interference and noise ratio (SINR) of users by predicting the constructive interference. Towards this end, we formulate a minimum mean square error (MMSE) problem, which is relaxed over the constructive interference region with the minimum required cumulative constrictive interference gain (CCIG) under a total power constraint. We then derive the optimal transmit signal vector as a function of Lagrange multipliers obtained by Karush-Kuhn-Tucker (KKT) conditions. Our numerical results demonstrate that the proposed data-aided precoding scheme provides more CCIG than other state-of-the-art schemes, which turns out to be useful under a mm-wave band channel with few multi-paths or non-homogeneous environment.","PeriodicalId":345352,"journal":{"name":"2017 IEEE Globecom Workshops (GC Wkshps)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Globecom Workshops (GC Wkshps)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOMW.2017.8269178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Unlike the general concept of eliminating or avoiding inter-user interference in the multi-user downlink multiple-input single-output (MISO) system, the data-aided precoding scheme attempts to exploit the constructive interference at symbol level among the multiple users. A positive interference can be constructed to enhance the received signal gain by predicting the phase and magnitude of inter-user interference. Thus, we propose constructive interference optimization that maximizes the signal-to-interference and noise ratio (SINR) of users by predicting the constructive interference. Towards this end, we formulate a minimum mean square error (MMSE) problem, which is relaxed over the constructive interference region with the minimum required cumulative constrictive interference gain (CCIG) under a total power constraint. We then derive the optimal transmit signal vector as a function of Lagrange multipliers obtained by Karush-Kuhn-Tucker (KKT) conditions. Our numerical results demonstrate that the proposed data-aided precoding scheme provides more CCIG than other state-of-the-art schemes, which turns out to be useful under a mm-wave band channel with few multi-paths or non-homogeneous environment.
符号级链路自适应的建设性多用户干扰:MMSE方法
与消除或避免多用户下行链路多输入单输出(MISO)系统中用户间干扰的一般概念不同,数据辅助预编码方案试图利用多用户之间在符号级的建设性干扰。通过预测用户间干扰的相位和大小,可以构造一个正干扰来提高接收信号的增益。因此,我们提出建设性干扰优化,通过预测建设性干扰来最大化用户的信噪比(SINR)。为此,我们制定了一个最小均方误差(MMSE)问题,该问题在总功率约束下具有最小所需累积收缩干扰增益(CCIG)的建设性干扰区域上放松。然后,我们推导出最优的发射信号矢量,作为Karush-Kuhn-Tucker (KKT)条件下得到的拉格朗日乘子的函数。数值结果表明,所提出的数据辅助预编码方案比其他先进方案提供了更多的CCIG,这在毫米波信道中具有较少的多径或非均匀环境下是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信