Ling Zhang, Zhongyang Zhang, Chenxi Huang, Han Deng, Hank Lin, B. Tseng, J. Drewniak, C. Hwang
{"title":"Decoupling Capacitor Selection Algorithm for PDN Based on Deep Reinforcement Learning","authors":"Ling Zhang, Zhongyang Zhang, Chenxi Huang, Han Deng, Hank Lin, B. Tseng, J. Drewniak, C. Hwang","doi":"10.1109/ISEMC.2019.8825249","DOIUrl":null,"url":null,"abstract":"Selection of decoupling capacitors (decaps) is important for power distribution network (PDN) design in terms of lowering impedance and saving cost. Good PDN designs typically mean satisfying a target impedance with as less decaps as possible. In this paper, an inductance-based method is utilized to calculate the port priority fist, and afterwards deep reinforcement learning (DRL) with deep neural network (DNN) is applied to optimize the assignment of decaps on the prioritized locations. The DRL algorithm can explore by itself without any prior physical knowledge, and the DNN is trained with the exploration experience and eventually converges to an optimum state. The proposed hybrid method was tested on a printed-circuit-board (PCB) example. After some iterations of training the DNN successfully reached to an optimum design, which turned out to be the minimum number of decaps that can satisfy the target impedance. The usage of DRL with DNN makes the algorithm promising to include more variables as input and handle more complicated cases in the future.","PeriodicalId":137753,"journal":{"name":"2019 IEEE International Symposium on Electromagnetic Compatibility, Signal & Power Integrity (EMC+SIPI)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Electromagnetic Compatibility, Signal & Power Integrity (EMC+SIPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEMC.2019.8825249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
Selection of decoupling capacitors (decaps) is important for power distribution network (PDN) design in terms of lowering impedance and saving cost. Good PDN designs typically mean satisfying a target impedance with as less decaps as possible. In this paper, an inductance-based method is utilized to calculate the port priority fist, and afterwards deep reinforcement learning (DRL) with deep neural network (DNN) is applied to optimize the assignment of decaps on the prioritized locations. The DRL algorithm can explore by itself without any prior physical knowledge, and the DNN is trained with the exploration experience and eventually converges to an optimum state. The proposed hybrid method was tested on a printed-circuit-board (PCB) example. After some iterations of training the DNN successfully reached to an optimum design, which turned out to be the minimum number of decaps that can satisfy the target impedance. The usage of DRL with DNN makes the algorithm promising to include more variables as input and handle more complicated cases in the future.