Análise de Amostras Sintéticas de Sinais de Sonar Passivo Geradas por Redes Neurais Generativas Adversariais

J. D. C. V. Fernandes, Natanael Junior, J. Seixas
{"title":"Análise de Amostras Sintéticas de Sinais de Sonar Passivo Geradas por Redes Neurais Generativas Adversariais","authors":"J. D. C. V. Fernandes, Natanael Junior, J. Seixas","doi":"10.21528/cbic2019-64","DOIUrl":null,"url":null,"abstract":"In naval warfare, several techniques have been developed for the detection and classification of war vessels. Given the confidential nature of the data it is extremely difficult to get a hold of large quantities of data which makes it extremely hard to use techniques that rely on abundant data, such as deep learning. This paper proposes the use of generative adversarial neural networks for the generation of synthetic samples that can later be used in training of classifiers. This paper focuses on the generation process and the qualifying of such samples. Keywords—Sonar Systems, Neural Networks, Generative Adversarial Neural Networks (GAN), Deep Learning.","PeriodicalId":160474,"journal":{"name":"Anais do 14. Congresso Brasileiro de Inteligência Computacional","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do 14. Congresso Brasileiro de Inteligência Computacional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21528/cbic2019-64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In naval warfare, several techniques have been developed for the detection and classification of war vessels. Given the confidential nature of the data it is extremely difficult to get a hold of large quantities of data which makes it extremely hard to use techniques that rely on abundant data, such as deep learning. This paper proposes the use of generative adversarial neural networks for the generation of synthetic samples that can later be used in training of classifiers. This paper focuses on the generation process and the qualifying of such samples. Keywords—Sonar Systems, Neural Networks, Generative Adversarial Neural Networks (GAN), Deep Learning.
对抗性生成神经网络产生的被动声纳信号的合成样本分析
在海战中,已经发展了几种探测和分类军舰的技术。考虑到数据的机密性,获取大量数据是极其困难的,这使得使用依赖于大量数据的技术(如深度学习)变得极其困难。本文提出使用生成对抗神经网络来生成合成样本,这些样本可以稍后用于分类器的训练。本文的重点是这些样本的生成过程和鉴定。关键词:声纳系统,神经网络,生成对抗神经网络(GAN),深度学习
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信