for Comparing Accuracy of Time-Series Forecasting Methods

Junichi Sekitani, Harumi Murakami
{"title":"for Comparing Accuracy of Time-Series Forecasting Methods","authors":"Junichi Sekitani, Harumi Murakami","doi":"10.1109/iiaiaai55812.2022.00136","DOIUrl":null,"url":null,"abstract":"The research and development of time-series forecasting requires a relative assessment of forecast accuracy, although determining which model or method to select is difficult. This study creates a simple experimental framework for selecting time-series forecasting methods, based on the methods employed as benchmarks in theM4 Competition and commonly used in machine learning competitions. We added gradient boosting and other methods used in this study. Our experimental results using M4 data confirmed the high accuracy of the combination and statistical models as in theM4 Competition.","PeriodicalId":156230,"journal":{"name":"2022 12th International Congress on Advanced Applied Informatics (IIAI-AAI)","volume":"149 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 12th International Congress on Advanced Applied Informatics (IIAI-AAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iiaiaai55812.2022.00136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The research and development of time-series forecasting requires a relative assessment of forecast accuracy, although determining which model or method to select is difficult. This study creates a simple experimental framework for selecting time-series forecasting methods, based on the methods employed as benchmarks in theM4 Competition and commonly used in machine learning competitions. We added gradient boosting and other methods used in this study. Our experimental results using M4 data confirmed the high accuracy of the combination and statistical models as in theM4 Competition.
比较时间序列预测方法的精度
时间序列预测的研究和发展需要对预测精度进行相对评估,尽管确定选择哪种模型或方法是困难的。本研究基于theM4竞赛和机器学习竞赛中常用的基准方法,创建了一个简单的实验框架,用于选择时间序列预测方法。我们加入了本研究中使用的梯度增强等方法。我们使用M4数据的实验结果证实了组合和统计模型与theM4竞赛一样具有很高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信